图书介绍
外汇用的数学方法PDF|Epub|txt|kindle电子书版本网盘下载
![外汇用的数学方法](https://www.shukui.net/cover/76/30700277.jpg)
- (美)利普顿著 著
- 出版社: 世界图书广东出版公司
- ISBN:9787510005398
- 出版时间:2009
- 标注页数:676页
- 文件大小:21MB
- 文件页数:696页
- 主题词:数学方法-应用-外汇业务-英文
PDF下载
下载说明
外汇用的数学方法PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Ⅰ Introduction1
1 Foreign exchange markets3
1.1 Introduction3
1.2 Historical background4
1.3 Forex as an asset class7
1.4 Spot forex8
1.5 Derivatives:forwards,futures,calls,puts,and all that9
1.6 References and further reading17
Ⅱ Mathematical preliminaries19
2 Elements of probability theory21
2.1 Introduction21
2.2 Probability spaces22
2.3 Random variables26
2.4 Convergence of random variables and limit theorems38
2.5 References and further reading42
3 Discrete-time stochastic engines43
3.1 Introduction43
3.2 Time series44
3.3 Binomial stochastic engines for single- and multi-period markets46
3.4 Multinomial stochastic engines55
3.5 References and further reading57
4 Continuous-time stochastic engines59
4.1 Introduction59
4.2 Stochastic processes61
4.3 Markov processes63
4.4 Diffusions65
4.5 Wiener processes76
4.6 Poisson processes81
4.7 SDE and Mappings84
4.8 Linear SDEs91
4.9 SDEs for jump-diffusions96
4.10 Analytical solution of PDEs98
4.10.1 Introduction98
4.10.2 The reduction method98
4.10.3 The Laplace transform method103
4.10.4 The eigenfunction expansion method104
4.11 Numerical solution of PDEs106
4.11.1 Introduction106
4.11.2 Explicit,implicit,and Crank-Nicolson schemes for solving one-dimensional problems107
4.11.3 ADI scheme for solving two-dimensional problems109
4.12 Numerical solution of SDEs112
4.12.1 Introduction112
4.12.2 Formulation of the problem113
4.12.3 The Euler-Maruyama scheme113
4.12.4 The Milstein scheme114
4.13 References and further reading116
Ⅲ Discrete-time models119
5 Single-period markets121
5.1 Introduction121
5.2 Binomiai markets with nonrisky investments123
5.3 Binomial markets without nonrisky investments140
5.4 General single-period markets145
5.5 Economic constraints147
5.6 Pricing of contingent claims154
5.7 Elementary portfolio theory162
5.8 The optimal investment problem166
5.9 Elements of equilibrium theory168
5.10 References and further reading169
6 Multi-period markets171
6.1 Introduction171
6.2 Stationary binomial markets172
6.3 Non-stationary binomial markets194
6.3.1 Introduction194
6.3.2 The nonrecombining case195
6.3.3 The recombining case197
6.4 General multi-period markets202
6.5 Contingent claims and their valuation and hedging207
6.6 Portfolio theory208
6.7 The optimal investment problem210
6.8 References and further reading212
Ⅳ Continuous-time models213
7 Stochastic dynamics of forex215
7.1 Introduction215
7.2 Two-country markets with deterministic investments216
7.3 Two-country markets without deterministic investments223
7.4 Multi-country markets227
7.5 The nonlinear diffusion model230
7.6 The jump diffusion model232
7.7 The stochastic volatility model233
7.8 The general forex evolution model236
7.9 References and further reading237
8 European options:the group-theoretical approach239
8.1 Introduction239
8.2 The two-country homogeneous problem,Ⅰ240
8.2.1 Formulation of the problem240
8.2.2 Reductions of the pricing problem245
8.2.3 Continuous hedging and the Greeks248
8.3 Forwards,calls and puts250
8.3.1 Definitions250
8.3.2 Pricing via the Feynman-Kac formula250
8.3.3 A naive pricing attempt256
8.3.4 Pricing via the Fourier transform method257
8.3.5 Pricing via the Laplace transform method259
8.3.6 The limiting behavior of calls and puts261
8.4 Contingent claims with arbitrary payoffs263
8.4.1 Introduction263
8.4.2 The decomposition formula263
8.4.3 Call and put bets264
8.4.4 Log contracts and modified log contracts265
8.5 Dynamic asset allocation266
8.6 The two-country homogeneous problem,Ⅱ275
8.7 The multi-country homogeneous problem277
8.7.1 Introduction277
8.7.2 The homogeneous pricing problem278
8.7.3 Reductions279
8.7.4 Probabilistic pricing and hedging280
8.8 Some representative multi-factor options281
8.8.1 Introduction281
8.8.2 Outperformance options282
8.8.3 Options on the maximum or minimum of several FXRs284
8.8.4 Basket options286
8.8.5 Index options290
8.8.6 The multi-factor decomposition formula291
8.9 References and further reading292
9 European options,the classical approach293
9.1 Introduction293
9.2 The classical two-country pricing problem,Ⅰ294
9.2.1 The projection method294
9.2.2 The classical method296
9.2.3 The impact of the actual drift297
9.3 Solution of the classical pricing problem298
9.3.1 Nondimensionalization298
9.3.2 Reductions298
9.3.3 The pricing and hedging formulas for forwards,calls and puts299
9.3.4 European options with exotic payoffs306
9.4 The classical two-country pricing problem,Ⅱ310
9.5 The multi-country classical pricing problem315
9.5.1 Introduction315
9.5.2 Derivation315
9.5.3 Reductions315
9.5.4 Pricing and hedging of multi-factor options317
9.6 References and further reading317
10 Deviations from the Black-Scholes paradigm Ⅰ:nonconstant volatility319
10.1 Introduction319
10.2 Volatility term structures and smiles321
10.2.1 Introduction321
10.2.2 The implied volatility321
10.2.3 The local volatility323
10.2.4 The inverse problem325
10.2.5 How to deal with the smile329
10.3 Pricing via implied t.p.d.f.'s329
10.3.1 Implied t.p.d.f.'s and entropy maximization329
10.3.2 Possible functional forms of t.p.d.f.'s332
10.3.3 The chi-square pricing formula,Ⅰ335
10.3.4 The Edgeworth-type pricing formulas338
10.4 The sticky-strike and the sticky-delta models341
10.5 The general local volatility model344
10.5.1 Introduction344
10.5.2 Possible functional forms of local volatility345
10.5.3 The hyperbolic volatility model348
10.5.4 The displaced diffusion model350
10.6 Asymptotic treatment of the local volatility model353
10.7 The CEV model359
10.7.1 Introduction359
10.7.2 Reductions of the pricing problem360
10.7.3 Evaluation of the t.p.d.f362
10.7.4 Derivative pricing364
10.7.5 ATMF approximation368
10.8 The jump diffusion model371
10.8.1 Introduction371
10.8.2 The pricing problem371
10.8.3 Evaluation of the t.p.d.f372
10.8.4 Risk-neutral pricing373
10.9 The stochastic volatility model375
10.9.1 Introduction375
10.9.2 Basic equations376
10.9.3 Evaluation of the t.p.d.f379
10.9.4 The pricing formula384
10.9.5 The case of zero correlation386
10.10 Small volatility of volatility387
10.10.1 Introduction387
10.10.2 Basic equations388
10.10.3 The martingale formulation388
10.10.4 Perturbative expansion389
10.10.5 Summary of ODEs393
10.10.6 Solution of the leading order pricing problem394
10.10.7 The square-root model394
10.10.8 Computation of the implied volatility397
10.11 Multi-factor problems398
10.11.1 Introduction398
10.11.2 The chi-square pricing formula,Ⅱ399
10.12 References and further reading404
11 American Options405
11.1 Introduction405
11.2 General considerations407
11.2.1 The early exercise constraint407
11.2.2 The early exercise premium408
11.2.3 Some representative examples410
11.2.4 Rational bounds411
11.2.5 Parity and symmetry414
11.3 The risk-neutral valuation415
11.4 Alternative formulations of the valuation problem416
11.4.1 Introduction416
11.4.2 The inhomogeneous Black-Scholes problem formulation416
11.4.3 The linear complementarity formulation418
11.4.4 The linear program formulation420
11.5 Duality between puts and calls421
11.6 Application of Duhamel's principle422
11.6.1 The value of the early exercise premium422
11.6.2 The location of the early exercise boundary423
11.7 Asymptotic analysis of the pricing problem425
11.7.1 Short-dated options425
11.7.2 Long-dated and perpetual options430
11.8 Approximate solution of the valuation problem434
11.8.1 Introduction434
11.8.2 Bermudan approximation and extrapolation to the limit434
11.8.3 Quadratic approximation440
11.9 Numerical solution of the pricing problem442
11.9.1 Bermudan approximation442
11.9.2 Linear complementarity443
11.9.3 Integral equation444
11.9.4 Monte-Carlo valuation444
11.10 American options in a non-Black-Scholes framework445
11.11 Multi-factor American options445
11.11.1 Formulation445
11.11.2 Two representative examples446
11.12 References and further reading449
12 Path-dependent options Ⅰ:barrier options451
12.1 Introduction451
12.2 Single-factor,single-barrier options452
12.2.1 Introduction452
12.2.2 Pricing of single-barrier options via the method of images453
12.2.3 Pricing of single-barrier options via the method of heat potentials462
12.3 Static hedging469
12.4 Single-factor,double-barrier options472
12.4.1 Introduction472
12.4.2 Formulation473
12.4.3 The pricing problem without rebates474
12.4.4 Pricing of no-rebate calls and puts and double-no-touch options477
12.4.5 Pricing of calls and puts with rebate482
12.5 Deviations from the Black-Scholes paradigm484
12.5.1 Introduction484
12.5.2 Barrier options in the presence of the term structure of volatility484
12.5.3 Barrier options in the presence of constant elasticity of variance486
12.5.4 Barrier options in the presence of stochastic volatility492
12.6 Multi-factor barrier options498
12.7 Options on one currency with barriers on the other currency499
12.7.1 Introduction499
12.7.2 Formulation499
12.7.3 Solution via the Fourier method501
12.7.4 Solution via the method of images509
12.7.5 An alternative approach513
12.8 Options with one barrier for each currency514
12.8.1 General considerations514
12.8.2 The Green's function516
12.8.3 Two-factor,double-no-touch option520
12.9 Four-barrier options520
12.10 References and further reading526
13 Path-dependent options Ⅱ: lookback,Asian and other options527
13.1 Introduction527
13.2 Path-dependent options and augmented SDEs528
13.2.1 Description of path dependent options528
13.2.2 The augmentation procedure534
13.2.3 The pricing problem for augmented SDEs537
13.3 Risk-neutral valuation of path-dependent options538
13.4 Probabilistic pricing539
13.5 Lookback calls and puts542
13.5.1 Description542
13.5.2 Pricing via the method of images543
13.5.3 Similarity reductions547
13.5.4 Pricing via the Laplace transform548
13.5.5 Probabilistic pricing550
13.5.6 Barriers552
13.6 Asian options553
13.6.1 Description553
13.6.2 Geometric averaging553
13.6.3 Arithmetic averaging556
13.6.4 Exact solution via similarity reductions558
13.6.5 Pricing via the Laplace transform561
13.6.6 Approximate pricing of Asian calls revisited562
13.6.7 Discretely sampled Asian options565
13.7 Timer,fader and Parisian options566
13.7.1 Introduction566
13.7.2 Timer options566
13.7.3 Fader options573
13.7.4 Parisian options573
13.8 Standard passport options578
13.8.1 Description578
13.8.2 Similarity reductions and splitting579
13.8.3 Pricing via the Laplace transform581
13.8.4 Explicit solution for zero foreign interest rate582
13.9 More general passport options586
13.9.1 General considerations586
13.9.2 Explicit solution for zero foreign interest rate587
13.10 Variance and volatility swaps591
13.10.1 Introduction591
13.10.2 Description of swaps591
13.10.3 Pricing and hedging of swaps via convexity adjustments593
13.10.4 Log contracts and robust pricing and hedging of variance swaps599
13.11 The impact of stochastic volatility of path-dependent options602
13.11.1 The general valuation formula602
13.11.2 Evaluation of the t.p.d.f603
13.11.3 A transformed valuation formula608
13.12 Forward starting options(cliquets)608
13.13 Options on volatility611
13.13.1 The pricing problem611
13.13.2 Pricing of variance swaps613
13.13.3 Pricing of general swaps and swaptions614
13.14 References and further reading616
14 Deviations from the Black-Scholes paradigm Ⅱ:market frictions617
14.1 Introduction617
14.2 Imperfect hedging618
14.2.1 P&L distributions618
14.2.2 Stop-loss start-gain hedging and local times621
14.2.3 Parameter misspecification622
14.3 The uncertain volatility model627
14.4 Transaction costs630
14.5 Liquidity risk633
14.6 Default risk635
14.6.1 Introduction635
14.6.2 The pricing model635
14.6.3 Pricing of defaultable European calls637
14.6.4 Pricing of defaultable forward contracts640
14.7 References and further reading643
15 Future directions of research and conclusions645
15.1 Introduction645
15.2 Future directions645
15.3 Conclusions646
15.4 References and further reading646
Bibliography647
Index669