图书介绍
C单位球上的函数理论 影印版PDF|Epub|txt|kindle电子书版本网盘下载
- 鲁丁著 著
- 出版社: 世界图书出版公司北京公司
- ISBN:9787510052699
- 出版时间:2013
- 标注页数:436页
- 文件大小:46MB
- 文件页数:453页
- 主题词:球(数学)-函数论-教材-英文
PDF下载
下载说明
C单位球上的函数理论 影印版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Chapter 1 Preliminaries1
1.1 Some Terminology1
1.2 The Cauchy Formula in Polydiscs3
1.3 Differentiation7
1.4 Integrals over Spheres12
1.5 Homogeneous Expansions19
Chapter 2 The Automorphisms of B23
2.1 Cartan's Uniqueness Theorem23
2.2 The Automorphisms25
2.3 The Cayley Transform31
2.4 Fixed Points and Affine Sets32
Chapter 3 Integral Representations36
3.1 The Bergman Integral in B36
3.2 The Cauchy Integral in B38
3.3 The Invariant Poisson Integral in B50
Chapter 4 The Invariant Laplacian47
4.1 The Operator?47
4.2 Eigenfunctions of ?49
4.3 M-Harmonic Functions55
4.4 Pluriharmonic Functions59
Chapter 5 Boundary Behavior of Poisson Integrals65
5.1 A Nonisotropic Metric on S65
5.2 The Maximal Function of a Measure on S67
5.3 Differentiation of Measures on S70
5.4 K-Limits of Poisson Integrals72
5.5 Theorems of Calderón,Privalov,Plessner79
5.6 The Spaces N(B)and Hp(B)83
5.7 Appendix:Marcinkiewicz Interpolation88
Chapter 6 Boundary Behavior of Cauchy Integrals91
6.1 An Inequality92
6.2 Cauchy Integrals of Measures94
6.3 Cauchy Integrals of Lp-Functions99
6.4 Cauchy Integrals of Lipschitz Functions101
6.5 Toeplitz Operators110
6.6 Gleason's Problem114
Chapter 7 Some Lp-Topics120
7.1 Projections of Bergman Type120
7.2 Relations between Hp and Lp?H126
7.3 Zero-Varieties133
7.4 Pluriharmonic Majorants145
7.5 The Isometries of Hp(B)152
Chapter 8 Consequences of the Schwarz Lemma161
8.1 The Schwarz Lemma in B161
8.2 Fixed-Point Sets in B165
8.3 An Extension Problem166
8.4 The Lindel?f-?irka Theorem168
8.5 The Julia-Carathéodory Theorem174
Chapter 9 Measures Related to the Ball Algebra185
9.1 Introduction185
9.2 Valskii's Decomposition187
9.3 Henkin's Theorem189
9.4 A General Lebesgue Decomposition191
9.5 A General E.and M.Riesz Theorem195
9.6 The Cole-Range Theorem198
9.7 Pluriharmonic Majorants198
9.8 The Dual Space of A(B)202
Chapter 10 Interpolation Sets for the Ball Algebra204
10.1 Some Equivalences204
10.2 A Theorem of Varopoulos207
10.3 A Theorem of Bishop209
10.4 The Davie-?ksendal Theorem211
10.5 Smooth Interpolation Sets214
10.6 Determining Sets222
10.7 Peak Sets for Smooth Functions229
Chapter 11 Boundary Behavior of H∞-Functions234
11.1 A Fatou Theorem in One Variable234
11.2 Boundary Values on Curves in S237
11.3 Weak-Convergence244
11.4 A Problem on Extreme Values247
Chapter 12 Unitarily Invariant Function Spaces253
12.1 Spherical Harmonics253
12.2 The Spaces H(p,q)255
12.3 U-Invariant Spaces on S259
12.4 U-Invariant Subalgebras of C(S)264
12.5 The Case n=2270
Chapter 13 Moebius-Invariant Function Spaces278
13.1 .U-Invariant Spaces on S278
13.2 .U-Invariant Subalgebras of Co(B)280
13.3 .U-Invariant Subspaces of C(?)283
13.4 Some Applications285
Chapter 14 Analytic Varieties288
14.1 The Weierstrass Preparation Theorem288
14.2 Projections of Varieties291
14.3 Compact Varieties in ?n294
14.4 Hausdorff Measures295
Chapter 15 Proper Holomorphic Maps300
15.1 The Structure of Proper Maps300
15.2 Balls vs.Polydiscs305
15.3 Local Theorems309
15.4 Proper Maps from B to B314
15.5 A Characterization of B319
Chapter 16 The ?-Problem330
16.1 Differential Forms330
16.2 Differential Forms in Cn335
16.3 The ?-Problem with Compact Support338
16.4 Some Computations341
16.5 Koppelman's Cauchy Formula346
16.6 The ?-Problem in Convex Regions350
16.7 An Explicit Solution in B357
Chapter 17 The Zeros of Nevanlinna Functions364
17.1 The Henkin-Skoda Theorem364
17.2 Plurisubharmonic Functions366
17.3 Areas of Zero-Varieties381
Chapter 18 Tangential Cauchy-Riemann Operators387
18.1 Extensions from the Boundary387
18.2 Unsolvable Differential Equations395
18.3 Boundary Values of Pluriharmonic Functions397
Chapter 19 Open Problems403
19.1 The Inner Function Conjecture403
19.2 RP-Measures409
19.3 Miscellaneous Problems413
Bibliography419
Index431