图书介绍
Fracture Mechanics of Piezoelectric and Ferroelectric Solids 压电与铁电体的断裂力学PDF|Epub|txt|kindle电子书版本网盘下载
- (英)方岱宁,刘金喜著 著
- 出版社: 北京:清华大学出版社
- ISBN:9787302283638
- 出版时间:2012
- 标注页数:417页
- 文件大小:37MB
- 文件页数:432页
- 主题词:压电材料-断裂力学-英文;铁电体-断裂力学-英文
PDF下载
下载说明
Fracture Mechanics of Piezoelectric and Ferroelectric Solids 压电与铁电体的断裂力学PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Chapter 1 Introduction1
1.1 Background of the research on fracture mechanics of piezoelectric/ferroelectric materials1
1.2 Development course and trend3
1.3 Framework of the book and content arrangements4
References6
Chapter 2 Physical and Material Properties of Dielectrics9
2.1 Basic concepts of piezoelectric/ferroelectric materials9
2.2 Crystal structure of dielectrics12
2.3 Properties of electric polarization and piezoelectricity16
2.3.1 Microscopic mechanism of polarization17
2.3.2 Physical description of electric polarization17
2.3.3 Dielectric constant tensor of crystal and its symmetry20
2.4 Domain switch of ferroelectrics21
2.4.1 Electric domain and domain structure21
2.4.2 Switching of electric domain and principles for domain switch26
References31
Chapter 3 Fracture of Piezoelectric/Ferroelectric Materials—Experiments and Results33
3.1 Experimental approaches and techniques under an electromechanical coupling field35
3.1.1 High-voltage power supply35
3.1.2 High voltage insulation35
3.1.3 Moire interferometry40
3.1.4 Digital speckle correlation method42
3.1.5 Method of polarized microscope43
3.1.6 Experimental facilities44
3.2 Anisotropy of fracture toughness45
3.3 Electric field effect on fracture toughness46
3.4 Fracture behavior of ferroelectric nano-composites52
3.5 Measurement of strain field near electrode in double-layer structure ofpiezoelectric ceramics55
3.6 Observation of crack types near electrode tip58
3.7 Experimental results and analysis related to ferroelectric single crystal out-of-plane polarized60
3.7.1 Restorable domain switch at crack tip driyen by low electric field61
3.7.2 Cyclic domain switch driven by cyclic electric field64
3.7.3 Electric crack propagation and evolution of crack tip electric domain65
3.8 Experimental results and analysis concerning in-plane polarized ferroelectric single crytal67
3.8.1 Response of specimen under a positive electric field67
3.8.2 Crack tip domain switch under low negative electric field68
3.8.3 Domain switching zone near crack tip under negative field69
3.8.4 Evolution ofelectric domain near crack tip under alternating electric field72
References75
Chapter 4 Basic Equations of Piezoeleetrie Materials77
4.1 Basic equations77
4.1.1 Piezoelectric equations77
4.1.2 Gradient equations and balance equations83
4.2 Constraint relations between various electroelastic constants84
4.3 Electroelastic constants of piezoelectric materials85
4.3.1 Coordinate transformation between vector and tensor of the second order85
4.3.2 Coordinate transformation of electroelastic constants86
4.3.3 Electroelastic constant matrixes of piezoelectric crystals vested in 20 kinds ofpoint groups88
4.4 Governing differential equations and boundary conditions of electromechanical coupling problems92
4.4.1 Governing difierential equations of electromechanical coupling problems92
4.4.2 Boundary conditions of electromechanical coupling95
References95
Chapter 5 General Solutions to Electromeehanical Coupling Problems of Piezoelectric Materials97
5.1 Extended Stroh formalism for piezoelectricity97
5.1.1 Extended Stroh formalism98
5.1.2 Mathematical properties and important relations of Stroh formalism102
5.2 Lekhniskii formalism for piezoelectricity107
5.3 General solutions to two-dimensional problems of transversely isotropic piezoelectric materials112
5.3.1 The general solutions to the anti-plane problems of transversely isotropic piezoelectric materials112
5.3.2 The general solutions to the in-plane problems of transversely isotropic piezoelectric materials—Stroh method113
5.3.3 The general solutions to the in-plane problems of transversely isotropic piezoelectric materials—Lekhniskii method116
5.4 General solutions to three-dimensional problems of transversely isotropic piezoelectric materials119
References123
Chapter 6 Fracture Mechanics of Homogeneous Piezoelectric Materials125
6.1 Anti-plane fracture problem127
6.2 In-plane fracture problem130
6.3 Three dimensional fracture problem135
6.3.1 Description of problem136
6.3.2 Derivation of electroelastic fields138
6.4 Electromechanical coupling problem for a dielectric elliptic hole142
6.4.1 Anti-plane problem of transversely isotropic piezoelctric material containing dielectric ellipic holes142
6.4.2 Generalized plane problems of piezoelectric materials containing a dielectric elliptic hole149
6.5 Influence on crack tip field imposed by electric boundary conditions along the crack surface158
References158
Chapter 7 Interface Fracture Mechanics of Piezoelectric Materials161
7.1 Interfacial cracks in piezoelectric materials under uniform electromechanical loads163
7.1.1 Tip field of interfacial crack163
7.1.2 Full field solutions for an impermeable interfacial crack167
7.2 Effect of material properties on interfacial crack tip field170
7.3 Green's functions for piezoelectric materials with an interfacial crack172
7.3.1 Brief review of Green's functions for piezoelectric materials172
7.3.2 Green's functions for anti-plane interfacial cracks174
References179
Chapter 8 Dynamic Fracture Mechanics of Piezoelectric Materials183
8.1 Scattering of elastic waves in a cracked piezoelectrics185
8.1.1 Basic concepts concerning propagation of elastic wave in a piezoelectrics185
8.1.2 Dominant research work on elastic wave scattering caused by cracks in piezoelectrics188
8.1.3 Scattering of Love wave caused by interficial cracks in layered elastic half-space ofpiezoelectrics190
8.2 Moving cracks in piezoelectric medium197
8.2.1 Anti-plane problems of moving interficial cracks198
8.2.2 The plane problem of moving cracks203
8.3 Transient response of a cracked piezoelectrics to electromechanical impact load210
8.3.1 Anti-plane problems of cracked piezoelectrics under impact electromechanical loads211
8.3.2 Transient response of crack mode-Ⅲ in strip-shaped piezoelectric medium216
8.3.3 In-plane problems of cracked piezoelectrics under the action of impact electromechanical loads217
8.4 Dynamic crack propagation in piezoelectric materials222
8.4.1 Dynamic propagation of conducting crack mode-Ⅲ223
8.4.2 Dynamic propagation of dielectric crack mode-Ⅲ229
References233
Chapter 9 Nonlinear Fraeture Mechanics of Ferroelectric Materials235
9.1 Nonlinear fracture mechanical model236
9.1.1 Electrostriction model236
9.1.2 Dugdale model(striP saturation mode)244
9.2 Domain switching toughening model248
9.2.1 Decoupled isotropy model249
9.2.2 Anisotropy model for electromechanical coupling252
9.3 Nonlinear crack opening displacement model262
9.3.1 Definition of crack opening displacement263
9.3.2 Crack opening displacement δ0 caused by piezoelectric effect265
9.3.3 Effect △δof domain switching on crack opening displacement266
9.4 Interaction between crack tip domain switching of BaTi03 single crystal and crack growth under electromechanical load272
9.4.1 Experiment principle and technology273
9.4.2 Experimental phenomena273
9.4.3 Analysis ofdomain switching zone276
9.4.4 Ferroelastic domain switching toughening285
References289
Chapter 10 Fracture Criteria293
10.1 Stress intensity factor criterion294
10.2 Energy release rate critefrion294
10.2.1 Total energy release rate criterion294
10.2.2 Mechanical strain energy release rate criterion297
10.3 Energy density factor criterion305
10.4 Further discussion on stress intensity factor criterion305
10.5 COD criterion308
References310
Chapter 11 Electro-elastic Concentrations Induced by Electrodes in Piezoelectric Materials313
111 Electroelastic field near surface electrodes314
11.1.1 Electroelastic field near stripe-shaped surface electrodes314
11.1.2 Electroelastic field near circular surface electrodes322
11.2 Electroelastic field near interface electrode328
11.2.1 General solution to the interface electrode of anisotropic piezoelectric bi-materials329
11.2.2 Electroelastic field near the interface electrode in transversely isotropic piezoelectric bi-materials332
11.3 Electroelastic field in piezoelectric ceramic-electrode layered structures334
11.3.1 Laminated structure model,experimental set-up and finite element calculation model334
11.3.2 Numerical calculation and experimentally measured results337
References340
Chapter 12 Electric-Induced Fatigue Fracture343
12.1 Experimental observation and results344
12.1.1 Electrically induced fatigue experiment by Cao and Evans(1994)344
12.1.2 Electrically induced fatigue experiment of samples containing penetrating cracks346
12.2 Phenomenological model356
12.2.1 Model Ⅰ356
12.2.2 Model Ⅱ360
12.3 Domain switching model361
12.3.1 Electrically induced fatigue investigated by means of crack tip intensity factor361
12.3.2 Investigation of electrically induced fatigue by means of crack opening displacement(COD)369
References375
Chapter 13 Numerical Method for Analyzing Fracture ofPiezoelectric and Ferroelectric Materials377
13.1 Generalized variation principle380
13.1.1 Generalized variation principle of linear elastic mechanics380
13.1.2 Variation principle of electromechanical coupling problem382
13.2 Finite element method for piezoelectric material fracture384
13.2.1 Basic format of finite element for piezoelectric fracture384
13.2.2 Calculation example:the electromechanical field around the circular hole in an infmite piezoelectric matrix387
13.2.3 Calculation example:model ofpiezoelectric material with two-sided notches389
13.3 Meshless method for piezoelectric material fracture391
13.3.1 Basic format of electromechanical coupling meshless method391
13.3.2 Some problems about electromechanical coupling meshless method393
13.3.3 Numerical example397
13.4 Nonlinear finite element analysis of ferroelectric material fracture397
13.4.1 Solution of field quantity with given electric domain distribution398
13.4.2 New electric domain distribution and finite element iterative process determined by field quantity404
13.4.3 Calculation example:Ferroelectric crystal containing insulating circular hole plus vertical electric field406
13.4.4 Calculation example:Ferroelectric crystal containing insulating crack plus electric field(E=0.72Ec)perpendicular to crack surface411
References415
Appendix The Material Constants ofPiezoelectric Ceramics417