图书介绍
分析 第1卷 英文版 影印本PDF|Epub|txt|kindle电子书版本网盘下载
![分析 第1卷 英文版 影印本](https://www.shukui.net/cover/55/34463308.jpg)
- (德)阿莫恩(HERBERT AMANN),JOACHIM ESCHER著 著
- 出版社: 世界图书出版公司北京公司
- ISBN:7510047985
- 出版时间:2012
- 标注页数:426页
- 文件大小:65MB
- 文件页数:453页
- 主题词:
PDF下载
下载说明
分析 第1卷 英文版 影印本PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Chapter Ⅰ Foundations3
1 Fundamentals of Logic3
2 Sets8
Elementary Facts8
The Power Set9
Complement,Intersection and Union9
Products10
Families of Sets12
3 Functions15
Simple Examples16
Composition of Functions17
Commutative Diagrams17
Injections,Surjections and Bijections18
Inverse Functions19
Set Valued Functions20
4 Relations and Operations22
Equivalence Relations22
Order Relations23
Operations26
5 The Natural Numbers29
The Peano Axioms29
The Arithmetic of Natural Numbers31
The Division Algorithm34
The Induction Principle35
Recursive Definitions39
6 Countability46
Permutations47
Equinumerous Sets47
Countable Sets48
Infinite Products49
7 Groups and Homomorphisms52
Groups52
Subgroups54
Cosets55
Homomorphisms56
Isomorphisms58
8 Rings,Fields and Polynomials62
Rings62
The Binomial Theorem65
The Multinomial Theorem65
Fields67
Ordered Fields69
Formal Power Series71
Polynomials73
Polynomial Functions75
Division of Polynomials76
Linear Factors77
Polynomials in Several Indeterminates78
9 The Rational Numbers84
The Integers84
The Rational Numbers85
Rational Zeros of Polynomials88
Square Roots88
10 The Real Numbers91
Order Completeness91
Dedekind's Construction of the Real Numbers92
The Natural Order on R94
The Extended Number Line94
A Characterization of Supremum and Infimum95
The Archimedean Property96
The Density of the Rational Numbers in R96
nth Roots97
The Density of the Irrational Numbers in R99
Intervals100
11 The Complex Numbers103
Constructing the Complex Numbers103
Elementary Properties104
Computation with Complex Numbers106
Balls in K108
12 Vector Spaces,Affine Spaces and Algebras111
Vector Spaces111
Linear Functions112
Vector Space Bases115
Affine Spaces117
Affine Functions119
Polynomial Interpolation120
Algebras122
Difference Operators and Summation Formulas123
Newton Interpolation Polynomials124
Chapter Ⅱ Convergence131
1 Convergence of Sequences131
Sequences131
Metric Spaces132
Cluster Points134
Convergence135
Bounded Sets137
Uniqueness of the Limit137
Subsequences138
2 Real and Complex Sequences141
Null Sequences141
Elementary Rules141
The Comparison Test143
Complex Sequences144
3 Normed Vector Spaces148
Norms148
Balls149
Bounded Sets150
Examples150
The Space of Bounded Functions151
Inner Product Spaces153
The Cauchy-Schwarz Inequality154
Euclidean Spaces156
Equivalent Norms157
Convergence in Product Spaces159
4 Monotone Sequences163
Bounded Monotone Sequences163
Some Important Limits164
5 Infinite Limits169
Convergence to ±∞169
The Limit Superior and Limit Inferior170
The Bolzano-Weierstrass Theorem172
6 Completeness175
Cauchy Sequences175
Banach Spaces176
Cantor's Construction of the Real Numbers177
7 Series183
Convergence of Series183
Harmonic and Geometric Series184
Calculating with Series185
Convergence Tests185
Alternating Series186
Decimal,Binary and Other Representations of Real Numbers187
The Uncountability of R192
8 Absolute Convergence195
Majorant,Root and Ratio Tests196
The Exponential Function199
Rearrangements of Series199
Double Series201
Cauchy Products204
9 Power Series210
The Radius of Convergence211
Addition and Multiplication of Power Series213
The Uniqueness of Power Series Representations214
Chapter Ⅲ Continuous Functions219
1 Continuity219
Elementary Properties and Examples219
Sequential Continuity224
Addition and Multiplication of Continuous Functions224
One-Sided Continuity228
2 The Fundamentals of Topology232
Open Sets232
Closed Sets233
The Closure of a Set235
The Interior of a Set236
The Boundary of a Set237
The Hausdorff Condition237
Examples238
A Characterization of Continuous Functions239
Continuous Extensions241
Relative Topology244
General Topological Spaces245
3 Compactness250
Covers250
A Characterization of Compact Sets251
Sequential Compactness252
Continuous Functions on Compact Spaces252
The Extreme Value Theorem253
Total Boundedness256
Uniform Continuity258
Compactness in General Topological Spaces259
4 Connectivity263
Definition and Basic Properties263
Connectivity in R264
The Generalized Intermediate Value Theorem265
Path Connectivity265
Connectivity in General Topological Spaces268
5 Functions on R271
Bolzano's Intermediate Value Theorem271
Monotone Functions272
Continuous Monotone Functions274
6 The Exponential and Related Functions277
Euler's Formula277
The Real Exponential Function280
The Logarithm and Power Functions281
The Exponential Function on iR283
The Definition of π and its Consequences285
The Tangent and Cotangent Functions289
The Complex Exponential Function290
Polar Coordinates291
Complex Logarithms293
Complex Powers294
A Further Representation of the Exponential Function295
Chapter Ⅳ Differentiation in One Variable301
1 Differentiability301
The Derivative301
Linear Approximation302
Rules for Difierentiation304
The Chain Rule305
Inverse Functions306
Difierentiable Functions307
Higher Derivatives307
One-Sided Differentiability313
2 The Mean Value Theorem and its Applications317
Extrema317
The Mean Value Theorem318
Monotonicity and Differentiability319
Convexity and Differentiability322
The Inequalities of Young,H?lder and Minkowski325
The Mean Value Theorem for Vector Valued Functions328
The Second Mean Value Theorem329
L'Hospital's Rule330
3 Taylor's Theorem335
The Landau Symbol335
Taylor's Formula336
Taylor Polynomials and Taylor Series338
The Remainder Function in the Real Case340
Polynomial Interpolation344
Higher Order Difference Quotients345
4 Iterative Procedures350
Fixed Points and Contractions350
The Banach Fixed Point Theorem351
Newton's Method355
Chapter Ⅴ Sequences of Functions363
1 Uniform Convergence363
Pointwise Convergence363
Uniform Convergence364
Series of Functions366
The Weierstrass Majorant Criterion367
2 Continuity and Differentiability for Sequences of Functions370
Continuity370
Locally Uniform Convergence370
The Banach Space of Bounded Continuous Functions372
Differentiability373
3 Analytic Functions377
Differentiability of Power Series377
Analyticity378
Antiderivatives of Analytic Functions380
The Power Series Expansion of the Logarithm381
The Binomial Series382
The Identity Theorem for Analytic Functions386
4 Polynomial Approximation390
Banach Algebras390
Density and Separability391
The Stone-Weierstrass Theorem393
Trigonometric Polynomials396
Periodic Functions398
The Trigonometric Approximation Theorem401
Appendix Introduction to Mathematical Logic405
Bibliography411
Index413