图书介绍

线性和非线性规划 第3版 英文PDF|Epub|txt|kindle电子书版本网盘下载

线性和非线性规划 第3版 英文
  • (美)吕恩博格著 著
  • 出版社: 北京:世界图书北京出版公司
  • ISBN:9787510094736
  • 出版时间:2015
  • 标注页数:549页
  • 文件大小:74MB
  • 文件页数:564页
  • 主题词:非线性规划-英文;线性规划-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

线性和非线性规划 第3版 英文PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Chapter 1.Introduction1

1.1.Optimization1

1.2.Types of Problems2

1.3.Size of Problems5

1.4.Iterative Algorithms and Convergence6

PART Ⅰ Linear Programming11

Chapter 2.Basic Properties of Linear Programs11

2.1.Introduction11

2.2.Examples of Linear Programming Problems14

2.3.Basic Solutions19

2.4.The Fundamental Theorem of Linear Programming20

2.5.Relations to Convexity22

2.6.Exercises28

Chapter 3.The Simplex Method33

3.1.Pivots33

3.2.Adjacent Extreme Points38

3.3.Determining a Minimum Feasible Solution42

3.4.Computational Procedure—Simplex Method46

3.5.Artificial Variables50

3.6.Matrix Form of the Simplex Method54

3.7.The Revised Simplex Method56

3.8.The Simplex Method and LU Decomposition59

3.9.Decomposition62

3.10.Summary70

3.11.Exercises70

Chapter 4.Duality79

4.1.Dual Linear Programs79

4.2.The Duality Theorem82

4.3.Relations to the Simplex Procedure84

4.4.Sensitivity and Complementary Slackness88

4.5.The Dual Simplex Method90

4.6.The Primal-Dual Algorithm93

4.7.Reduction of Linear Inequalities98

4.8.Exercises103

Chapter 5.Interior-Point Methods111

5.1.Elements of Complexity Theory112

5.2.The Simplex Method is not Polynomial-Time114

5.3.The Ellipsoid Method115

5.4.The Analytic Center118

5.5.The Central Path121

5.6.Solution Strategies126

5.7.Termination and Initialization134

5.8.Summary139

5.9.Exercises140

Chapter 6.Transportation and Network Flow Problems145

6.1.The Transportation Problem145

6.2.Finding a Basic Feasible Solution148

6.3.Basis Triangularity150

6.4.Simplex Method for Transportation Problems153

6.5.The Assignment Problem159

6.6.Basic Network Concepts160

6.7.Minimum Cost Flow162

6.8.Maximal Flow166

6.9.Summary174

6.10.Exercises175

PART Ⅱ Unconstrained Problems183

Chapter 7.Basic Properties of Solutions and Algorithms183

7.1.First-Order Necessary Conditions184

7.2.Examples of Unconstrained Problems186

7.3.Second-Order Conditions190

7.4.Convex and Concave Functions192

7.5.Minimization and Maximization of Convex Functions197

7.6.Zero-Order Conditions198

7.7.Global Convergence of Descent Algorithms201

7.8.Speed of Convergence208

7.9.Summary212

7.10.Exercises213

Chapter 8.Basic Descent Methods215

8.1.Fibonacci and Golden Section Search216

8.2.Line Search by Curve Fitting219

8.3.Global Convergence of Curve Fitting226

8.4.Closedness of Line Search Algorithms228

8.5.Inaccurate Line Search230

8.6.The Method of Steepest Descent233

8.7.Applications of the Theory242

8.8.Newton's Method246

8.9.Coordinate Descent Methods253

8.10.Spacer Steps255

8.11.Summary256

8.12.Exercises257

Chapter 9.Conjugate Direction Methods263

9.1.Conjugate Directions263

9.2.Descent Properties of the Conjugate Direction Method266

9.3.The Conjugate Gradient Method268

9.4.The C-G Method as an Optimal Process271

9.5.The Partial Conjugate Gradient Method273

9.6.Extension to Nonquadratic Problems277

9.7.Parallel Tangents279

9.8.Exercises282

Chapter 10.Quasi-Newton Methods285

10.1.Modified Newton Method285

10.2.Construction of the Inverse288

10.3.Davidon-Fletcher-Powell Method290

10.4.The Broyden Family293

10.5.Convergence Properties296

10.6.Scaling299

10.7.Memoryless Quasi-Newton Methods304

10.8.Combination of Steepest Descent and Newton's Method306

10.9.Summary312

10.10.Exercises313

PART Ⅲ Constrained Minimization321

Chapter 11.Constrained Minimization Conditions321

11.1.Constraints321

11.2.Tangent Plane323

11.3.First-Order Necessary Conditions(Equality Constraints)326

11.4.Examples327

11.5.Second-Order Conditions333

11.6.Eigenvalues in Tangent Subspace335

11.7.Sensitivity339

11.8.Inequality Constraints341

11.9.Zero-Order Conditions and Lagrange Multipliers346

11.10.Summary353

11.11.Exercises354

Chapter 12.Primal Methods359

12.1.Advantage of Primal Methods359

12.2.Feasible Direction Methods360

12.3.Active Set Methods363

12.4.The Gradient Projection Method367

12.5.Convergence Rate of the Gradient Projection Method374

12.6.The Reduced Gradient Method382

12.7.Convergence Rate of the Reduced Gradient Method387

12.8.Variations394

12.9.Summary396

12.10.Exercises396

Chapter 13.Penalty and Barrier Methods401

13.1.Penalty Methods402

13.2.Barrier Methods405

13.3.Properties of Penalty and Barrier Functions407

13.4.Newton's Method and Penalty Functions416

13.5.Conjugate Gradients and Penalty Methods418

13.6.Normalization of Penalty Functions420

13.7.Penalty Functions and Gradient Projection421

13.8.Exact Penalty Functions425

13.9.Summary429

13.10.Exercises430

Chapter 14.Dual and Cutting Plane Methods435

14.1.Global Duality435

14.2.Local Duality441

14.3.Dual Canonical Convergence Rate446

14.4.Separable Problems447

14.5.Augmented Lagrangians451

14.6.The Dual Viewpoint456

14.7.Cutting Plane Methods460

14.8.Kelley's Convex Cutting Plane Algorithm463

14.9.Modifications465

14.10.Exercises466

Chapter 15.Primal-Dual Methods469

15.1.The Standard Problem469

15.2.Strategies471

15.3.A Simple Merit Function472

15.4.Basic Primal-Dual Methods474

15.5.Modified Newton Methods479

15.6.Descent Properties481

15.7.Rate of Convergence485

15.8.Interior Point Methods487

15.9.Semidefinite Programming491

15.10.Summary498

15.11.Exercises499

Appendix A.Mathemtical Review507

A.1.Sets507

A.2.Matrix Notation508

A.3.Spaces509

A.4.Eigenvalues and Quadratic Forms510

A.5.Topological Concepts511

A.6.Functions512

Appendix B.Convex Sets515

B.1.Basic Definitions515

B.2.Hyperplanes and Polytopes517

B.3.Separating and Supporting Hyperplanes519

B.4.Extreme Points521

Appendix C.Gaussian Elimination523

Bibliography527

Index541

热门推荐