图书介绍
Mechanical Behavior of MaterialsPDF|Epub|txt|kindle电子书版本网盘下载
- Marc Andre Meyers 著
- 出版社: Cambridge University Press
- ISBN:
- 出版时间:2009
- 标注页数:856页
- 文件大小:392MB
- 文件页数:878页
- 主题词:
PDF下载
下载说明
Mechanical Behavior of MaterialsPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Chapter Ⅰ Materials:Structure,Properties,and Performance1
1.1 Introduction1
1.2 Monolithic,Composite,and Hierarchical Materials3
1.3 Structure of Materials15
1.3.1 Crystal Structures16
1.3.2 Metals19
1.3.3 Ceramics25
1.3.4 Glasses30
1.3.5 Polymers31
1.3.6 Liquid Crystals39
1.3.7 Biological Materials and Biomaterials40
1.3.8 Porous and Cellular Materials44
1.3.9 Nano-and Microstructure of Biological Materials45
1.3.10 The Sponge Spicule:An Example of a Biological Material56
1.3.11 Active(or Smart)Materials57
1.3.12 Electronic Materials58
1.3.13 Nanotechnology60
1.4 Strength of Real Materials61
Suggested Reading64
Exercises65
Chapter 2 Elasticity and Viscoelasticity71
2.1 Introduction71
2.2 Longitudinal Stress and Strain72
2.3 Strain Energy(or Deformation Energy)Density77
2.4 Shear Stress and Strain80
2.5 Poisson’s Ratio83
2.6 More Complex States of Stress85
2.7 Graphical Solution of a Biaxial State of Stress:the Mohr Circle89
2.8 Pure Shear:Relationship between G and E95
2.9 Anisotropic Effects96
2.10 Elastic Properties of Polycrystals107
2.11 Elastic Properties of Materials110
2.11.1 Elastic Properties of Metals111
2.11.2 Elastic Properties of Ceramics111
2.11.3 Elastic Properties of Polymers116
2.11.4 Elastic Constants of Unidirectional Fiber Reinforced Composite117
2.12 Viscoelasticity120
2.12.1 Storage and Loss Moduli124
2.13 Rubber Elasticity126
2.14 Mooney-Rivlin Equation131
2.15 Elastic Properties of Biological Materials134
2.15.1 Blood Vessels134
2.15.2 Articular Cartilage137
2.15.3 Mechanical Properties at the Nanometer Level140
2.16 Elastic Properties of Electronic Materials143
2.17 Elastic Constants and Bonding145
Suggested Reading155
Exercises155
Chapter 3 Plasticity161
3.1 Introduction161
3.2 Plastic Deformation in Tension163
3.2.1 Tensile Curve Parameters171
3.2.2 Necking172
3.2.3 Strain Rate Effects176
3.3 Plastic Deformation in Compression Testing183
3.4 The Bauschunger Effect187
3.5 Plastic Deformation of Polymers188
3.5.1 Stress-Strain Curves188
3.5.2 Glassy Polymers189
3.5.3 Semicrystalline Polymers190
3.5.4 Viscous Flow191
3.5.5 Adiabatic Heating192
3.6 Plastic Deformation of Glasses193
3.6.1 Microscopic Deformation Mechanism195
3.6.2 Temperature Dependence and Viscosity197
3.7 Flow,Yield,and Failure Criteria199
3.7.1 Maximum-Stress Criterion(Rankine)200
3.7.2 Maximum-Shear-Stress Criterion(Tresca)200
3.7.3 Maximum-Distortion-Energy Criterion(von Mises)201
3.7.4 Graphical Representation and Experimental Verification of Rankine,Tresca,and von Mises Criteria201
3.7.5 Failure Criteria for Brittle Materials205
3.7.6 Yield Criteria for Ductile Polymers209
3.7.7 Failure Criteria for Composite Materials211
3.7.8 Yield and Failure Criteria for Other Anisotropic Materials213
3.8 Hardness214
3.8.1 Macro indentation Tests216
3.8.2 Microindentation Tests221
3.8.3 Nanoindentation225
3.9 Formability:Important Parameters229
3.9.1 Plastic Anisotropy231
3.9.2 Punch-Stretch Tests and Forming-Limit Curves (or Keeler-Goodwin Diagrams)232
3.10 Muscle Force237
3.11 Mechanical Properties of Some Biological Materials241
Suggested Reading245
Exercises246
Chapter 4 Imperfections:Point and Line Defects251
4.1 Introduction251
4.2 Theoretical Shear Strength252
4.3 Atomic or Electronic Point Defects254
4.3.1 Equilibrium Concentration of Point Defects256
4.3.2 Production of Point Defects259
4.3.3 Effect of Point Defects on Mechanical Properties260
4.3.4 Radiation Damage261
4.3.5 Ion Implantation265
4.4 Line Defects266
4.4.1 Experimental Observation of Dislocations270
4.4.2 Behavior of Dislocations273
4.4.3 Stress Field Around Dislocations275
4.4.4 Energy of Dislocations278
4.4.5 Force Required to Bow a Dislocation282
4.4.6 Dislocations in Various Structures284
4.4.7 Dislocations in Ceramics293
4.4.8 Sources of Dislocations298
4.4.9 Dislocation Pileups302
4.4.10 Intersection of Dislocations304
4.4.11 Deformation Produced by Motion of Dislocations (Orowan’s Equation)306
4.4.12 The Peierls-Nabarro Stress309
4.4.13 The Movement of Dislocations:Temperature and Strain Rate Effects310
4.4.14 Dislocations in Electronic Materials313
Suggested Reading316
Exercises317
Chapter 5 Imperfections:Interfacial and Volumetric Defects321
5.1 Introduction321
5.2 Grain Boundaries321
5.2.1 Tilt and Twist Boundaries326
5.2.2 Energy of a Grain Boundary328
5.2.3 Variation of Grain-Boundary Energy with Misorientation330
5.2.4 Coincidence Site Lattice(CSL)Boundaries332
5.2.5 Grain-Boundary Triple Junctions334
5.2.6 Grain-Boundary Dislocations and Ledges334
5.2.7 Grain Boundaries as a Packing of Polyhedral Units336
5.3 Twinning and Twin Boundaries336
5.3.1 Crystallography and Morphology337
5.3.2 Mechanical Effects341
5.4 Grain Boundaries in Plastic Deformation(Grain-size Strengthening)345
5.4.1 Hall-Petch Theory348
5.4.2 Cottrell’s Theory349
5.4.3 Li’s Theory350
5.4.4 Meyers-Ashworth Theory351
5.5 Other Internal Obstacles353
5.6 Nanocrystalline Materials355
5.7 Volumetric or Tridimensional Defects358
5.8 Imperfections in Polymers361
Suggested Reading364
Exercises364
Chapter 6 Geometry of Deformation and Work-Hardening369
6.1 Introduction369
6.2 Geometry of Deformation373
6.2.1 Stereographic Projections373
6.2.2 Stress Required for Slip374
6.2.3 Shear Deformation380
6.2.4 Slip in Systems and Work-Hardening381
6.2.5 Independent Slip Systems in Polycrystals384
6.3 Work-Hardening in Polycrystals384
6.3.1 Taylor’s Theory386
6.3.2 Seeger’s Theory388
6.3.3 Kuhlmann-Wilsdorfs Theory388
6.4 Softening Mechanisms392
6.5 Texture Strengthening395
Suggested Reading399
Exercises399
Chapter 7 Fracture:Macroscopic Aspects404
7.1 Introduction404
7.2 Theorectical Tensile Strength406
7.3 Stress Concentration and Griffith Criterion of Fracture409
7.3.1 Stress Concentrations409
7.3.2 Stress Concentration Factor409
7.4 Griffith Criterion416
7.5 Crack Propagation with Plasticity419
7.6 Linear Elastic Fracture Mechanics421
7.6.1 Fracture Toughness422
7.6.2 Hypotheses of LEFM423
7.6.3 Crack-Tip Separation Modes423
7.6.4 Stress Field in an Isotropic Material in the Vicinity of a Crack Tip424
7.6.5 Details of the Crack-Tip Stress Field in Mode Ⅰ425
7.6.6 Plastic-Zone Size Correction428
7.6.7 Variation in Fracture Toughness with Thickness431
7.7 Fracture Toughness Parameters434
7.7.1 Crack Extension Force G434
7.7.2 Crack Opening Displacement437
7.7.3 J Integral440
7.7.4 R Curve443
7.7.5 Relationships among Different Fracture Toughness Parameters444
7.8 Importance of KIc in Practice445
7.9 Post-Yield Fracture Mechanics448
7.10 Statistical Analysis of Failure Strength449
Appendix:Stress Singularity at Crack Tip458
Suggested Reading460
Exercises460
Chapter 8 Fracture:Microscopic Aspects466
8.1 Introduction466
8.2 Facture in Metals468
8.2.1 Crack Nucleation468
8.2.2 Ductile Fracture469
8.2.3 Brittle,or Cleavage,Fracture480
8.3 Facture in Ceramics487
8.3.1 Microstructural Aspects487
8.3.2 Effect of Grain Size on Strength of Ceramics494
8.3.3 Fracture of Ceramics in Tension496
8.3.4 Fracture in Ceramics Under Compression499
8.3.5 Thermally Induced Fracture in Ceramics504
8.4 Fracture in Polymers507
8.4.1 Brittle Fracture507
8.4.2 Crazing and Shear Yielding508
8.4.3 Fracture in Semicrystalline and Crystalline Polymers512
8.4.4 Toughness of Polymers513
8.5 Fracture and Toughness of Biological Materials517
8.6 Facture Mechanism Maps521
Suggested Reading521
Exercises521
Chapter 9 Fracture Testing525
9.1 Introduction525
9.2 Impact Testing525
9.2.1 Charpy Impact Test526
9.2.2 Drop-Weight Test529
9.2.3 Instrumented Charpy Impact Test531
9.3 Plane-Strain Fracture Toughness Test532
9.4 Crack Opening Displacement Testing537
9.5 J-Integral Testing538
9.6 Flexure Test540
9.6.1 Three-Point Bend Test541
9.6.2 Four-Point Bending542
9.6.3 Interlaminar Shear Strength Test543
9.7 Fracture Toughness Testing of Brittle Materials545
9.7.1 Chevron Notch Test547
9.7.2 Indentation Methods for Determining Toughness549
9.8 Adhesion of Thin Films to Substrates552
Suggested Reading553
Exercises553
Chapter 10 Solid Solution,Precipitation,and Dispersion Strengthening558
10.1 Introduction558
10.2 Solid-Solution Strengthening559
10.2.1 Elastic Interaction560
10.2.2 Other Interactions564
10.3 Mechanical Effects Associated with Solid Solutions564
10.3.1 Well-Defined Yield Point in the Stress-Strain Curves565
10.3.2 Plateau in the Stress-Strain Curve and Luders Band566
10.3.3 Strain Aging567
10.3.4 Serrated Stress-Strain Curve568
10.3.5 Snoek Effect569
10.3.6 Blue Brittleness570
10.4 Precipitation-and Dispersion-Hardening571
10.5 Dislocation-Precipitate Interaction579
10.6 Precipitation in Microalloyed Steels585
10.7 Dual-Phase Steels590
Suggested Reading590
Exercises591
Chapter 11 Martensitic Transformation594
11.1 Introduction594
11.2 Structures and Morphologies of Martensite594
11.3 Strength of Martensite600
11.4 Mechanical Effects603
11.5 Shape-Memory Effect608
11.5.1 Shape-Memory Effect in Polymers614
11.6 Martensitic Transformation in Ceramics614
Suggested Reading618
Exercises619
Chapter 12 Special Materials:Intermetallics and Foams621
12.1 Introduction621
12.2 Silicides621
12.3 Ordered Intermetallics622
12.3.1 Dislocation Structures in Ordered Intermetallics624
12.3.2 Effect of Ordering on Mechanical Properties628
12.3.3 Ductility of Intermetallics634
12.4 Cellular Materials639
12.4.1 Structure639
12.4.2 Modeling of the Mechanical Response639
12.4.3 Comparison of Predictions and Experimental Results645
12.4.4 Syntactic Foam645
12.4.5 Plastic Behavior of Porous Materials646
Suggested Reading650
Exercises650
Chapter 13 Creep and Superplasticity653
13.1 Introduction653
13.2 Correlation and Extrapolation Methods659
13.3 Fundamental Mechanisms Responsible for Creep665
13.4 Diffusion Creep666
13.5 Dislocation(or Power Law)Creep670
13.6 Dislocation Glide673
13.7 Grain-Boundary Sliding675
13.8 Deformation-Mechanism(Weertman-Ashby)Maps676
13.9 Creep-Induced Fracture678
13.10 Heat-Resistant Materials681
13.11 Creep in Polymers688
13.12 Diffusion-Related Phenomena in Electronic Materials695
13.13 Superplasticity697
Suggested Reading705
Exercises705
Chapter 14 Fatigue713
14.1 Introduction713
14.2 Fatigue Parameters and S-N(Wohler)Curves714
14.3 Fatigue Strength or Fatigue Life716
14.4 Effect of Mean Stress on Fatigue Life719
14.5 Effect of Frequency721
14.6 Cumulative Damage and Life Exhaustion721
14.7 Mechanisms of Fatigue725
14.7.1 Fatigue Crack Nucleation725
14.7.2 Fatigue Crack Propagation730
14.8 Linear Elastic Fracture Mechanics Applied to Fatigue735
14.8.1 Fatigue of Biomaterials744
14.9 Hysteretic Heating in Fatigue746
14.10 Environmental Effects in Fatigue748
14.11 Fatigue Crack Closure748
14.12 The Two-Parameter Approach749
14.13 The Short-Crack Problem in Fatigue750
14.14 Fatigue Testing751
14.14.1 Conventional Fatigue Tests751
14.14.2 Rotating Bending Machine751
14.14.3 Statistical Analysis of S-N Curves753
14.14.4 Nonconventional Fatigue Testing753
14.14.5 Servohydraulic Machines755
14.14.6 Low-Cycle Fatigue Tests756
14.14.7 Fatigue Crack Propagation Testing757
Suggested Reading758
Exercises759
Chapter 15 Composite Materials765
15.1 Introduction765
15.2 Types of Composites765
15.3 Important Reinforcements and Matrix Materials767
15.3.1 Microstructural Aspects and Importance of the Matrix769
15.4 Interfaces in Composites770
15.4.1 Crystallographic Nature of the Fiber-Matrix Interface771
15.4.2 Interfacial Bonding in Composites772
15.4.3 Interfacial Interactions773
15.5 Properties of Composites774
15.5.1 Density and Heat Capacity775
15.5.2 Elastic Moduli775
15.5.3 Strength780
15.5.4 Anisotropic Nature of Fiber Reinforced Composites783
15.5.5 Aging Response of Matrix in MMCs785
15.5.6 Toughness785
15.6 Load Transfer from Matrix to Fiber788
15.6.1 Fiber and Matrix Elastic789
15.6.2 Fiber Elastic and Matrix Plastic792
15.7 Fracture in Composites794
15.7.1 Single and Multiple Fracture795
15.7.2 Failure Modes in Composites796
15.8 Some Fundamental Characteristics of Composites799
15.8.1 Heterogeneity799
15.8.2 Anisotropy799
15.8.3 Shear Coupling801
15.8.4 Statistical Variation in Strength802
15.9 Functionally Graded Materials803
15.10 Applications803
15.10.1 Aerospace Applications803
15.10.2 Nonaerospace Applications804
15.11 Laminated Composites806
Suggested Reading809
Exercises810
Chapter 16 Environmental Effects815
16.1 Introduction815
16.2 Electrochemical Nature of Corrosion in Metals815
16.2.1 Galvanic Corrosion816
16.2.2 Uniform Corrosion817
16.2.3 Crevice corrosion817
16.2.4 Pitting Corrosion818
16.2.5 Intergranular Corrosion818
16.2.6 Selective leaching819
16.2.7 Erosion-Corrosion819
16.2.8 Radiation Damage819
16.2.9 Stress Corrosion819
16.3 Oxidation of metals819
16.4 Environmentally Assisted Fracture in Metals820
16.4.1 Stress Corrosion Cracking(SCC)820
16.4.2 Hydrogen Damage in Metals824
16.4.3 Liquid and Solid Metal Embrittlement830
16.5 Environmental Effects in Polymers831
16.5.1 Chemical or Solvent Attack832
16.5.2 Swelling832
16.5.3 Oxidation833
16.5.4 Radiation Damage834
16.5.5 Environmental Crazing835
16.5.6 Alleviating the Environmental Damage in Polymers836
16.6 Environmental Effects in Ceramics836
16.6.1 Oxidation of Ceramics839
Suggested Reading840
Exercises840
Appendixes843
Index851