图书介绍

Mechanical Behavior of MaterialsPDF|Epub|txt|kindle电子书版本网盘下载

Mechanical Behavior of Materials
  • Marc Andre Meyers 著
  • 出版社: Cambridge University Press
  • ISBN:
  • 出版时间:2009
  • 标注页数:856页
  • 文件大小:392MB
  • 文件页数:878页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

Mechanical Behavior of MaterialsPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Chapter Ⅰ Materials:Structure,Properties,and Performance1

1.1 Introduction1

1.2 Monolithic,Composite,and Hierarchical Materials3

1.3 Structure of Materials15

1.3.1 Crystal Structures16

1.3.2 Metals19

1.3.3 Ceramics25

1.3.4 Glasses30

1.3.5 Polymers31

1.3.6 Liquid Crystals39

1.3.7 Biological Materials and Biomaterials40

1.3.8 Porous and Cellular Materials44

1.3.9 Nano-and Microstructure of Biological Materials45

1.3.10 The Sponge Spicule:An Example of a Biological Material56

1.3.11 Active(or Smart)Materials57

1.3.12 Electronic Materials58

1.3.13 Nanotechnology60

1.4 Strength of Real Materials61

Suggested Reading64

Exercises65

Chapter 2 Elasticity and Viscoelasticity71

2.1 Introduction71

2.2 Longitudinal Stress and Strain72

2.3 Strain Energy(or Deformation Energy)Density77

2.4 Shear Stress and Strain80

2.5 Poisson’s Ratio83

2.6 More Complex States of Stress85

2.7 Graphical Solution of a Biaxial State of Stress:the Mohr Circle89

2.8 Pure Shear:Relationship between G and E95

2.9 Anisotropic Effects96

2.10 Elastic Properties of Polycrystals107

2.11 Elastic Properties of Materials110

2.11.1 Elastic Properties of Metals111

2.11.2 Elastic Properties of Ceramics111

2.11.3 Elastic Properties of Polymers116

2.11.4 Elastic Constants of Unidirectional Fiber Reinforced Composite117

2.12 Viscoelasticity120

2.12.1 Storage and Loss Moduli124

2.13 Rubber Elasticity126

2.14 Mooney-Rivlin Equation131

2.15 Elastic Properties of Biological Materials134

2.15.1 Blood Vessels134

2.15.2 Articular Cartilage137

2.15.3 Mechanical Properties at the Nanometer Level140

2.16 Elastic Properties of Electronic Materials143

2.17 Elastic Constants and Bonding145

Suggested Reading155

Exercises155

Chapter 3 Plasticity161

3.1 Introduction161

3.2 Plastic Deformation in Tension163

3.2.1 Tensile Curve Parameters171

3.2.2 Necking172

3.2.3 Strain Rate Effects176

3.3 Plastic Deformation in Compression Testing183

3.4 The Bauschunger Effect187

3.5 Plastic Deformation of Polymers188

3.5.1 Stress-Strain Curves188

3.5.2 Glassy Polymers189

3.5.3 Semicrystalline Polymers190

3.5.4 Viscous Flow191

3.5.5 Adiabatic Heating192

3.6 Plastic Deformation of Glasses193

3.6.1 Microscopic Deformation Mechanism195

3.6.2 Temperature Dependence and Viscosity197

3.7 Flow,Yield,and Failure Criteria199

3.7.1 Maximum-Stress Criterion(Rankine)200

3.7.2 Maximum-Shear-Stress Criterion(Tresca)200

3.7.3 Maximum-Distortion-Energy Criterion(von Mises)201

3.7.4 Graphical Representation and Experimental Verification of Rankine,Tresca,and von Mises Criteria201

3.7.5 Failure Criteria for Brittle Materials205

3.7.6 Yield Criteria for Ductile Polymers209

3.7.7 Failure Criteria for Composite Materials211

3.7.8 Yield and Failure Criteria for Other Anisotropic Materials213

3.8 Hardness214

3.8.1 Macro indentation Tests216

3.8.2 Microindentation Tests221

3.8.3 Nanoindentation225

3.9 Formability:Important Parameters229

3.9.1 Plastic Anisotropy231

3.9.2 Punch-Stretch Tests and Forming-Limit Curves (or Keeler-Goodwin Diagrams)232

3.10 Muscle Force237

3.11 Mechanical Properties of Some Biological Materials241

Suggested Reading245

Exercises246

Chapter 4 Imperfections:Point and Line Defects251

4.1 Introduction251

4.2 Theoretical Shear Strength252

4.3 Atomic or Electronic Point Defects254

4.3.1 Equilibrium Concentration of Point Defects256

4.3.2 Production of Point Defects259

4.3.3 Effect of Point Defects on Mechanical Properties260

4.3.4 Radiation Damage261

4.3.5 Ion Implantation265

4.4 Line Defects266

4.4.1 Experimental Observation of Dislocations270

4.4.2 Behavior of Dislocations273

4.4.3 Stress Field Around Dislocations275

4.4.4 Energy of Dislocations278

4.4.5 Force Required to Bow a Dislocation282

4.4.6 Dislocations in Various Structures284

4.4.7 Dislocations in Ceramics293

4.4.8 Sources of Dislocations298

4.4.9 Dislocation Pileups302

4.4.10 Intersection of Dislocations304

4.4.11 Deformation Produced by Motion of Dislocations (Orowan’s Equation)306

4.4.12 The Peierls-Nabarro Stress309

4.4.13 The Movement of Dislocations:Temperature and Strain Rate Effects310

4.4.14 Dislocations in Electronic Materials313

Suggested Reading316

Exercises317

Chapter 5 Imperfections:Interfacial and Volumetric Defects321

5.1 Introduction321

5.2 Grain Boundaries321

5.2.1 Tilt and Twist Boundaries326

5.2.2 Energy of a Grain Boundary328

5.2.3 Variation of Grain-Boundary Energy with Misorientation330

5.2.4 Coincidence Site Lattice(CSL)Boundaries332

5.2.5 Grain-Boundary Triple Junctions334

5.2.6 Grain-Boundary Dislocations and Ledges334

5.2.7 Grain Boundaries as a Packing of Polyhedral Units336

5.3 Twinning and Twin Boundaries336

5.3.1 Crystallography and Morphology337

5.3.2 Mechanical Effects341

5.4 Grain Boundaries in Plastic Deformation(Grain-size Strengthening)345

5.4.1 Hall-Petch Theory348

5.4.2 Cottrell’s Theory349

5.4.3 Li’s Theory350

5.4.4 Meyers-Ashworth Theory351

5.5 Other Internal Obstacles353

5.6 Nanocrystalline Materials355

5.7 Volumetric or Tridimensional Defects358

5.8 Imperfections in Polymers361

Suggested Reading364

Exercises364

Chapter 6 Geometry of Deformation and Work-Hardening369

6.1 Introduction369

6.2 Geometry of Deformation373

6.2.1 Stereographic Projections373

6.2.2 Stress Required for Slip374

6.2.3 Shear Deformation380

6.2.4 Slip in Systems and Work-Hardening381

6.2.5 Independent Slip Systems in Polycrystals384

6.3 Work-Hardening in Polycrystals384

6.3.1 Taylor’s Theory386

6.3.2 Seeger’s Theory388

6.3.3 Kuhlmann-Wilsdorfs Theory388

6.4 Softening Mechanisms392

6.5 Texture Strengthening395

Suggested Reading399

Exercises399

Chapter 7 Fracture:Macroscopic Aspects404

7.1 Introduction404

7.2 Theorectical Tensile Strength406

7.3 Stress Concentration and Griffith Criterion of Fracture409

7.3.1 Stress Concentrations409

7.3.2 Stress Concentration Factor409

7.4 Griffith Criterion416

7.5 Crack Propagation with Plasticity419

7.6 Linear Elastic Fracture Mechanics421

7.6.1 Fracture Toughness422

7.6.2 Hypotheses of LEFM423

7.6.3 Crack-Tip Separation Modes423

7.6.4 Stress Field in an Isotropic Material in the Vicinity of a Crack Tip424

7.6.5 Details of the Crack-Tip Stress Field in Mode Ⅰ425

7.6.6 Plastic-Zone Size Correction428

7.6.7 Variation in Fracture Toughness with Thickness431

7.7 Fracture Toughness Parameters434

7.7.1 Crack Extension Force G434

7.7.2 Crack Opening Displacement437

7.7.3 J Integral440

7.7.4 R Curve443

7.7.5 Relationships among Different Fracture Toughness Parameters444

7.8 Importance of KIc in Practice445

7.9 Post-Yield Fracture Mechanics448

7.10 Statistical Analysis of Failure Strength449

Appendix:Stress Singularity at Crack Tip458

Suggested Reading460

Exercises460

Chapter 8 Fracture:Microscopic Aspects466

8.1 Introduction466

8.2 Facture in Metals468

8.2.1 Crack Nucleation468

8.2.2 Ductile Fracture469

8.2.3 Brittle,or Cleavage,Fracture480

8.3 Facture in Ceramics487

8.3.1 Microstructural Aspects487

8.3.2 Effect of Grain Size on Strength of Ceramics494

8.3.3 Fracture of Ceramics in Tension496

8.3.4 Fracture in Ceramics Under Compression499

8.3.5 Thermally Induced Fracture in Ceramics504

8.4 Fracture in Polymers507

8.4.1 Brittle Fracture507

8.4.2 Crazing and Shear Yielding508

8.4.3 Fracture in Semicrystalline and Crystalline Polymers512

8.4.4 Toughness of Polymers513

8.5 Fracture and Toughness of Biological Materials517

8.6 Facture Mechanism Maps521

Suggested Reading521

Exercises521

Chapter 9 Fracture Testing525

9.1 Introduction525

9.2 Impact Testing525

9.2.1 Charpy Impact Test526

9.2.2 Drop-Weight Test529

9.2.3 Instrumented Charpy Impact Test531

9.3 Plane-Strain Fracture Toughness Test532

9.4 Crack Opening Displacement Testing537

9.5 J-Integral Testing538

9.6 Flexure Test540

9.6.1 Three-Point Bend Test541

9.6.2 Four-Point Bending542

9.6.3 Interlaminar Shear Strength Test543

9.7 Fracture Toughness Testing of Brittle Materials545

9.7.1 Chevron Notch Test547

9.7.2 Indentation Methods for Determining Toughness549

9.8 Adhesion of Thin Films to Substrates552

Suggested Reading553

Exercises553

Chapter 10 Solid Solution,Precipitation,and Dispersion Strengthening558

10.1 Introduction558

10.2 Solid-Solution Strengthening559

10.2.1 Elastic Interaction560

10.2.2 Other Interactions564

10.3 Mechanical Effects Associated with Solid Solutions564

10.3.1 Well-Defined Yield Point in the Stress-Strain Curves565

10.3.2 Plateau in the Stress-Strain Curve and Luders Band566

10.3.3 Strain Aging567

10.3.4 Serrated Stress-Strain Curve568

10.3.5 Snoek Effect569

10.3.6 Blue Brittleness570

10.4 Precipitation-and Dispersion-Hardening571

10.5 Dislocation-Precipitate Interaction579

10.6 Precipitation in Microalloyed Steels585

10.7 Dual-Phase Steels590

Suggested Reading590

Exercises591

Chapter 11 Martensitic Transformation594

11.1 Introduction594

11.2 Structures and Morphologies of Martensite594

11.3 Strength of Martensite600

11.4 Mechanical Effects603

11.5 Shape-Memory Effect608

11.5.1 Shape-Memory Effect in Polymers614

11.6 Martensitic Transformation in Ceramics614

Suggested Reading618

Exercises619

Chapter 12 Special Materials:Intermetallics and Foams621

12.1 Introduction621

12.2 Silicides621

12.3 Ordered Intermetallics622

12.3.1 Dislocation Structures in Ordered Intermetallics624

12.3.2 Effect of Ordering on Mechanical Properties628

12.3.3 Ductility of Intermetallics634

12.4 Cellular Materials639

12.4.1 Structure639

12.4.2 Modeling of the Mechanical Response639

12.4.3 Comparison of Predictions and Experimental Results645

12.4.4 Syntactic Foam645

12.4.5 Plastic Behavior of Porous Materials646

Suggested Reading650

Exercises650

Chapter 13 Creep and Superplasticity653

13.1 Introduction653

13.2 Correlation and Extrapolation Methods659

13.3 Fundamental Mechanisms Responsible for Creep665

13.4 Diffusion Creep666

13.5 Dislocation(or Power Law)Creep670

13.6 Dislocation Glide673

13.7 Grain-Boundary Sliding675

13.8 Deformation-Mechanism(Weertman-Ashby)Maps676

13.9 Creep-Induced Fracture678

13.10 Heat-Resistant Materials681

13.11 Creep in Polymers688

13.12 Diffusion-Related Phenomena in Electronic Materials695

13.13 Superplasticity697

Suggested Reading705

Exercises705

Chapter 14 Fatigue713

14.1 Introduction713

14.2 Fatigue Parameters and S-N(Wohler)Curves714

14.3 Fatigue Strength or Fatigue Life716

14.4 Effect of Mean Stress on Fatigue Life719

14.5 Effect of Frequency721

14.6 Cumulative Damage and Life Exhaustion721

14.7 Mechanisms of Fatigue725

14.7.1 Fatigue Crack Nucleation725

14.7.2 Fatigue Crack Propagation730

14.8 Linear Elastic Fracture Mechanics Applied to Fatigue735

14.8.1 Fatigue of Biomaterials744

14.9 Hysteretic Heating in Fatigue746

14.10 Environmental Effects in Fatigue748

14.11 Fatigue Crack Closure748

14.12 The Two-Parameter Approach749

14.13 The Short-Crack Problem in Fatigue750

14.14 Fatigue Testing751

14.14.1 Conventional Fatigue Tests751

14.14.2 Rotating Bending Machine751

14.14.3 Statistical Analysis of S-N Curves753

14.14.4 Nonconventional Fatigue Testing753

14.14.5 Servohydraulic Machines755

14.14.6 Low-Cycle Fatigue Tests756

14.14.7 Fatigue Crack Propagation Testing757

Suggested Reading758

Exercises759

Chapter 15 Composite Materials765

15.1 Introduction765

15.2 Types of Composites765

15.3 Important Reinforcements and Matrix Materials767

15.3.1 Microstructural Aspects and Importance of the Matrix769

15.4 Interfaces in Composites770

15.4.1 Crystallographic Nature of the Fiber-Matrix Interface771

15.4.2 Interfacial Bonding in Composites772

15.4.3 Interfacial Interactions773

15.5 Properties of Composites774

15.5.1 Density and Heat Capacity775

15.5.2 Elastic Moduli775

15.5.3 Strength780

15.5.4 Anisotropic Nature of Fiber Reinforced Composites783

15.5.5 Aging Response of Matrix in MMCs785

15.5.6 Toughness785

15.6 Load Transfer from Matrix to Fiber788

15.6.1 Fiber and Matrix Elastic789

15.6.2 Fiber Elastic and Matrix Plastic792

15.7 Fracture in Composites794

15.7.1 Single and Multiple Fracture795

15.7.2 Failure Modes in Composites796

15.8 Some Fundamental Characteristics of Composites799

15.8.1 Heterogeneity799

15.8.2 Anisotropy799

15.8.3 Shear Coupling801

15.8.4 Statistical Variation in Strength802

15.9 Functionally Graded Materials803

15.10 Applications803

15.10.1 Aerospace Applications803

15.10.2 Nonaerospace Applications804

15.11 Laminated Composites806

Suggested Reading809

Exercises810

Chapter 16 Environmental Effects815

16.1 Introduction815

16.2 Electrochemical Nature of Corrosion in Metals815

16.2.1 Galvanic Corrosion816

16.2.2 Uniform Corrosion817

16.2.3 Crevice corrosion817

16.2.4 Pitting Corrosion818

16.2.5 Intergranular Corrosion818

16.2.6 Selective leaching819

16.2.7 Erosion-Corrosion819

16.2.8 Radiation Damage819

16.2.9 Stress Corrosion819

16.3 Oxidation of metals819

16.4 Environmentally Assisted Fracture in Metals820

16.4.1 Stress Corrosion Cracking(SCC)820

16.4.2 Hydrogen Damage in Metals824

16.4.3 Liquid and Solid Metal Embrittlement830

16.5 Environmental Effects in Polymers831

16.5.1 Chemical or Solvent Attack832

16.5.2 Swelling832

16.5.3 Oxidation833

16.5.4 Radiation Damage834

16.5.5 Environmental Crazing835

16.5.6 Alleviating the Environmental Damage in Polymers836

16.6 Environmental Effects in Ceramics836

16.6.1 Oxidation of Ceramics839

Suggested Reading840

Exercises840

Appendixes843

Index851

热门推荐