图书介绍
高等数学 中PDF|Epub|txt|kindle电子书版本网盘下载
![高等数学 中](https://www.shukui.net/cover/37/32353049.jpg)
- 北京邮电学院函授部编 著
- 出版社: 北京:人民邮电出版社
- ISBN:15045总2312有5126
- 出版时间:1979
- 标注页数:513页
- 文件大小:16MB
- 文件页数:521页
- 主题词:
PDF下载
下载说明
高等数学 中PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
第二篇 一元函数的微积分学(续)1
第九章 导数的应用1
第一节 拉格朗奇定理、柯西定理2
第二节 罗必塔法则9
第三节 函数的单调增减性的判定法18
第四节 函数的极值23
第五节 函数的最大值和最小值及其应用27
第六节 曲线的凹凸性32
第七节 极值的第二判定法35
第八节 函数作图的一般程序、举例37
第九节 曲率43
第十节 曲率圆、曲率半径、曲率中心48
第十一节 方程实根的近似解49
微分法复习题59
第十章 不定积分64
第一节 不定积分的概念64
第二节 不定积分的性质68
第三节 基本积分表69
第四节 换元积分法75
第五节 分部积分法85
第六节 有理函数的积分92
第七节 三角函数的积分100
第八节 几种简单无理函数的积分109
第九节 关于积分问题的一些补充说明118
第十节 积分表的用法119
第十一章 定积分及其应用129
第一节 曲边梯形的面积129
第二节 变力所作的功132
第三节 定积分的概念133
第四节 定积分的性质140
第五节 定积分与不定积分之间的关系147
第六节 定积分的分部积分法与换元积分法153
第七节 定积分的近似计算法163
第八节 平面图形的面积171
第九节 体积185
第十节 平面曲线的弧长191
第十一节 定积分在物理学中的应用196
第十二节 广义积分203
不定积分表219
第三篇 空间解析几何学 矢量代数237
第十二章 空间直角坐标及矢量代数237
第一节 空间点的直角坐标237
第二节 两个基本问题243
第三节 矢量概念248
第四节 矢量的加法、减法、数量与矢量的乘法249
第五节 矢量的投影表示法258
第六节 矢量的数量积268
第七节 矢量的矢量积273
第十三章 曲面方程与曲线方程286
第一节 曲面方程的概念286
第二节 球面方程289
第三节 母线平行于坐标轴的柱面方程291
第四节 空间曲线的方程294
第十四章 空间的平面与直线298
第一节 平面的方程298
第二节 平面的一般方程的研究302
第三节 平面的截距式方程307
第四节 两平面的夹角和平行、垂直的条件309
第五节 空间直线的方程313
第十五章 几种主要的二次曲面324
第一节 椭球面324
第二节 椭圆抛物面328
第三节 锥面331
第四篇 多元函数微积分学335
第十六章 多元函数及其微分法335
第一节 基本概念335
第二节 二元函数的极限和连续性342
第三节 偏导数345
第四节 全增量与全微分353
第五节 复合函数的微分法365
第六节 隐函数的微分法372
第七节 高阶偏导数377
第八节 二元函数的极值382
第十七章 重积分393
第一节 二重积分的概念393
第二节 二重积分的性质399
第三节 二重积分的计算方法——二次积分法400
第四节 利用极坐标计算二重积分416
第五节 三重积分概念及计算法423
第六节 利用柱面坐标计算三重积分431
第七节 利用球面坐标计算三重积分436
第八节 曲面的面积442
第十八章 曲线积分与曲面积分453
第一节 对弧长的曲线积分454
第二节 对坐标的曲线积分462
第三节 平面上曲线积分与二重积分之间的关系 格林定理478
第四节 曲线积分与路径无关的条件483
第五节 对面积的曲面积分490
第六节 对坐标的曲面积分494
第七节 曲面积分与三重积分之间的关系 奥氏公式①506