图书介绍
电磁学PDF|Epub|txt|kindle电子书版本网盘下载
![电磁学](https://www.shukui.net/cover/37/31891476.jpg)
- (美)波拉克(Pollack,G.L.),(美)斯顿普(Stump,D.R.)著 著
- 出版社: 高等教育出版社
- ISBN:7040165767
- 出版时间:2005
- 标注页数:624页
- 文件大小:108MB
- 文件页数:40089045页
- 主题词:
PDF下载
下载说明
电磁学PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 History and Perspective1
1.1 Brief History of the Science of Electromagnetism1
1.2 Electromagnetism in the Standard Model5
2 Vector Calculus9
2.1 Vector Algebra10
2.1.1 Definitions10
2.1.2 Addition and Multiplication of Vectors13
2.1.3 Vector Product Identities14
2.1.4 Geometric Meanings16
2.2 Vector Differential Operators18
2.2.1 Gradient of a Scalar Function18
2.2.2 Divergence of a Vector Function19
2.2.3 Curl of a Vector Function20
2.2.4 DelIdentities23
2.3 Integral Theorems25
2.3.1 Gauss’s Theorem26
2.3.2 Stokes’s Theorem27
2.3.3 Vector Calculus in Fluid Mechanics29
2.4 Curvilinear Coordinates30
2.4.1 General Derivations30
2.4.2 Cartesian, Cylindrical, and Spherical Coordinates33
2.5 The Helmholtz Theorem37
3 Basic Principles of Electrostatics44
3.1 Coulomb’s Law44
3.1.1 The Superposition Principle46
3.2 The Electric Field46
3.2.1 Definition46
3.2.2 Charge as the Source of E47
3.2.3 Field of a Charge Continuum49
3.3 Curl and Divergence of E54
3.3.1 Field Theory Versus Action at a Distance56
3.3.2 Boundary Conditions of the Electrostatic Field56
3.4 The Integral Form of Gauss’s Law57
3.4.1 Flux and Charge57
3.4.2 Proof of Gauss’s Law57
3.4.3 Calculations Based on Gauss’s Law59
3.5 Green’s Function and the Dirac delta Function62
3.5.1 The Dirac delta Function62
3.5.2 Another Proof of Gauss’s Law65
3.6 The Electric Potential65
3.6.1 Definition and Construction65
3.6.2 Poisson’s Equation68
3.6.3 Example Calculations of V (x)69
3.7 Energy of the Electric Field72
3.8 The Multipole Expansion75
3.8.1 Two Charges75
3.8.2 The Electric Dipole77
3.8.3 Moments of a General Charge Distribution78
3.8.4 Equipotentials and Field Lines79
3.8.5 Torque and Potential Energy for a Dipole in an Electric Field80
3.9 Applications82
3.10 Chapter Summary83
4 Electrostatics and Conductors92
4.1 Electrostatic properties of conductors93
4.2 Electrostatic Problems with Rectangular Symmetry98
4.2.1 Charged Plates98
4.2.2 Problems with Rectangular Symmetry and External Point Charges.The Method of Images102
4.3 Problems with Spherical Symmetry107
4.3.1 Charged Spheres107
4.3.2 Problems with Spherical Symmetry and External Charges113
4.4 Problems with Cylindrical Symmetry116
4.4.1 Charged Lines and Cylinders116
4.4.2 Problems with Cylindrical Symmetry and an External Line Charge124
5 General Methods for Laplace’s Equation133
5.1 Separation of Variables for Cartesian Coordinates135
5.1.1 Separable Solutions for Cartesian Coordinates136
5.1.2 Examples138
5.2 Separation of Variables for Spherical Polar Coordinates147
5.2.1 Separable Solutions for Spherical Coordinates147
5.2.2 Legendre Polynomials149
5.2.3 Examples with Spherical Boundaries150
5.3 Separation of Variables for Cylindrical Coordinates159
5.3.1 Separable Solutions for Cylindrical Coordinates160
5.4 Conjugate Functions in 2 Dimensions163
5.5 Iterative Relaxation: A Numerical Method172
6 Electrostatics and Dielectrics186
6.1 The Atom as an Electric Dipole187
6.1.1 Induced Dipoles187
6.1.2 Polar Molecules189
6.2 Polarization and Bound Charge191
6.3 The Displacement Field195
6.3.1 Linear Dielectrics197
6.3.2 The Clausius-Mossotti Formula198
6.3.3 Poisson’s Equation in a Uniform Linear Dielectric200
6.4 Dielectric Material in a Capacitor201
6.4.1 Design of Capacitors203
6.4.2 Microscopic Theory204
6.4.3 Energy in a Capacitor205
6.4.4 A Concrete Model of a Dielectric207
6.5 Boundary Value Problems with Dielectrics208
6.5.1 The Boundary Conditions208
6.5.2 A Dielectric Sphere in an Applied Field209
6.5.3 A Point Charge above a Dielectric with a Planar Bound-ary Surface211
6.5.4 A Capacitor Partially Filled with Dielectric212
7 Electric Currents222
7.1 Electric Current in a Wire222
7.2 Current Density and the Continuity Equation224
7.2.1 Local Conservation of Charge226
7.2.2 Boundary Condition on J(x, t)226
7.3 Current and Resistance228
7.3.1 Ohm’s Law228
7.3.2 Fabrication of Resistors233
7.3.3 The Surface Charge on a Current Carrying Wire234
7.4 A Classical Model of Conductivity236
7.5 Joule’s Law238
7.6 Decay of a Charge Density Fluctuation239
7.7 Ⅰ-Ⅴ Characteristic of a Vacuum-Tube Diode241
7.8 Chapter Summary246
8 Magnetostatics252
8.1 The Magnetic Force and the Magnetic Field253
8.1.1 Force on a Moving Charge253
8.1.2 Force on a Current-Carrying Wire255
8.2 Applications of the Magnetic Force255
8.2.1 Helical or Circular Motion of q in Uniform B255
8.2.2 Cycloidal Motion of q in Crossed E and B258
8.2.3 Electric Motors260
8.3 Electric Current as a Source of Magnetic Field262
8.3.1 The Biot-Savart Law262
8.3.2 Forces on Parallel Wires266
8.3.3 General Field Equations for B(x)267
8.4 Ampere’s Law270
8.4.1 Ampere Law Calculations271
8.4.2 Formal Proof of Ampere’s Law277
8.5 The Vector Potential280
8.5.1 General Solution for A(x)281
8.6 The Magnetic Dipole284
8.6.1 Asymptotic Analysis284
8.6.2 Dipole Moment of a Planar Loop286
8.6.3 Torque and Potential Energy of a Magnetic Dipole287
8.6.4 The Magnetic Field of the Earth291
8.7 The Full Field of a Current Loop291
9 Magnetic Fields and Matter307
9.1 The Atom as a Magnetic Dipole307
9.1.1 Diamagnetism310
9.1.2 Paramagnetism313
9.2 Magnetization and Bound Currents314
9.2.1 Examples316
9.2.2 A Geometric Derivation of the Bound Currents320
9.3 Ampere’s Law for Free Currents, and H323
9.3.1 The Integral Form of Ampere’s Law326
9.3.2 The Constitutive Equation326
9.3.3 Magnetic Susceptibilities326
9.3.4 Boundary Conditions for Magnetic Fields329
9.4 Problems Involving Free Currents and Magnetic Materials331
9.5 A Magnetic Body in an External Field: The Magnetic Scalar Potentialφm (x)335
9.6 Ferromagnetism342
9.6.1 Measuring Magnetization Curves: The Rowland Ring343
9.6.2 Magnetization Curves of Ferromagnetic Materials345
9.6.3 The Permeability of a Ferromagnetic Material346
10 Electromagnetic Induction355
10.1 Motional EMF356
10.1.1 Electromotive Force356
10.1.2 EMF from Motion in B357
10.1.3 The Faraday Disk Generator358
10.2 Faraday’s Law of Electromagnetic Induction360
10.2.1 Mathematical Statement361
10.2.2 Lenz’s Law363
10.2.3 Eddy Currents364
10.3 Applications of Faraday’s Law368
10.3.1 The Electric Generator and Induction Motor369
10.3.2 The Betatron371
10.3.3 Self-Inductance372
10.3.4 Classical Model of Diamagnetism375
10.4 Mutual Inductance376
10.5 Magnetic Field Energy382
10.5.1 Energy in a Ferromagnet386
11 The Maxwell Equations397
11.1 The Maxwell Equations in Vacuum and the Displacement Current398
11.1.1 The Displacement Current399
11.2 Scalar and Vector Potentials405
11.2.1 Gauge Transformations and Gauge Invariance406
11.2.2 Gauge Choices and Equations for A(x,t) and V(x,t)407
11.3 The Maxwell Equations in Matter410
11.3.1 Free and Bound Charge and Current410
11.3.2 Boundary Conditions of Fields413
11.4 Energy and Momentum of Electromagnetic Fields415
11.4.1 Poynting’s Theorem416
11.4.2 Field Momentum421
11.5 Electromagnetic Waves in Vacuum423
11.5.1 Derivation of the Wave Equation424
11.5.2 An Example of a Plane Wave Solution425
11.5.3 Derivation of the General Plane Wave Solution431
11.5.4 A Spherical Harmonic Wave434
11.5.5 The Theory of Light437
12 Electromagnetism and Relativity445
12.1 Coordinate Transformations446
12.1.1 The Galilean Transformation446
12.1.2 The Lorentz Transformation448
12.1.3 Examples Involving the Lorentz Transformation450
12.2 Minkowski Space452
12.2.1 4-vectors, Scalars, and Tensors452
12.2.2 Kinematics of a Point Particle455
12.2.3 Relativistic Dynamics457
12.3 Electromagnetism in Covariant Form458
12.3.1 The Lorentz Force and the Field Tensor458
12.3.2 Maxwell’s Equations in Covariant Form460
12.3.3 The 4-vector Potential462
12.4 Field Transformations463
12.5 Fields Due to a Point Charge in Uniform Motion468
12.6 Magnetism from Relativity474
12.7 The Energy-Momentum Flux Tensor477
13 Electromagnetism and Optics485
13.1 Electromagnetic Waves in a Dielectric485
13.2 Reflection and Refraction at a Dielectric Interface488
13.2.1 Wave Vectors490
13.2.2 Reflectivity for Normal Incidence494
13.2.3 Reflection for Incidence at Arbitrary Angles: Fresnel’s Equations498
13.3 Electromagnetic Waves in a Conductor505
13.3.1 Reflectivity of a Good Conductor509
13.4 A Classical Model of Dispersion: The Frequency Dependence of Material Properties511
13.4.1 Dispersion in a Dielectric512
13.4.2 Dispersion in a Plasma514
14 Wave Guides and Transmission Lines523
14.1 Electromagnetic Waves Between Parallel Conducting Planes524
14.1.1 The TEM Solution526
14.1.2 TE Waves528
14.1.3 TM Waves537
14.1.4 Summary540
14.2 The Rectangular Wave Guide540
14.2.1 Transverse Electric Modes TE(m, n)541
14.2.2 Transverse Magnetic Modes TM(m, n)547
14.3 Wave Guide of Arbitrary Shape549
14.4 The TEM Mode of a Coaxial Cable551
14.5 Cavity Resonance555
15 Radiation of Electromagnetic Waves560
15.1 The Retarded Potentials561
15.1.1 Green’s Functions561
15.2 Radiation from an Electric Dipole567
15.2.1 The Hertzian Dipole571
15.2.2 Atomic Transitions574
15.2.3 Magnetic Dipole Radiation575
15.2.4 Complete Fields of a Hertzian Dipole577
15.3 The Half-Wave Linear Antenna579
15.4 The Larmor Formula: Radiation from a Point Charge584
15.5 Classical Electron Theory of Light Scattering589
15.6 Complete Fields of a Point Charge: The Lienard-Wiechert Potentials593
15.6.1 A Charge with Constant Velocity596
15.6.2 The Complete Fields598
15.6.3 Generalization of the Larmor Formula599
A Electric and Magnetic Units607
B The Helmholtz Theorem610
Index613