图书介绍

Advances in Unmanned Marine VehiclesPDF|Epub|txt|kindle电子书版本网盘下载

Advances in Unmanned Marine Vehicles
  • 出版社: Institution of Electrical Engineers
  • ISBN:0863414508
  • 出版时间:2006
  • 标注页数:441页
  • 文件大小:58MB
  • 文件页数:460页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

Advances in Unmanned Marine VehiclesPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 Editorial:navigation,guidance and control of unmanned marine vehicles&G.N.Roberts and R.Sutton1

1.1 Introduction1

1.2 Contributions4

1.3 Concluding Remarks11

2 Nonlinear modelling,identification and control of UUVs&T.I.Fossen and A.Ross13

2.1 Introduction13

2.1.1 Notation13

2.2 Modelling of UUVs14

2.2.1 Six DOF kinematic equations14

2.2.2 Kinetics16

2.2.3 Equations of motion16

2.2.4 Equations of motion including ocean currents19

2.2.5 Longitudinal and lateral models20

2.3 Identification of UUVs24

2.3.1 A priori estimates of rigid-body parameters25

2.3.2 A priori estimates of hydrodynamic added mass25

2.3.3 Identification of damping terms25

2.4 Nonlinear control of UUVs31

2.4.1 Speed,depth and pitch control32

2.4.2 Heading control37

2.4.3 Alternative methods of control40

2.5 Conclusions40

3 Guidance laws,obstacle avoidance and artificial potential functions&A.J.Healey43

3.1 Introduction43

3.2 Vehicle guidance,track following44

3.2.1 Vehicle steering model45

3.2.2 Line of sight guidance46

3.2.3 Cross-track error47

3.2.4 Line of sight with cross-track error controller49

3.2.5 Sliding mode cross-track error guidance50

3.2.6 Large heading error mode51

3.2.7 Track path transitions52

3.3 Obstacle avoidance52

3.3.1 Planned avoidance deviation in path52

3.3.2 Reactive avoidance54

3.4 Artificial potential functions59

3.4.1 Potential function for obstacle avoidance61

3.4.2 Multiple obstacles62

3.5 Conclusions64

3.6 Acknowledgements65

4 Behaviour control of UUVs&M.Carreras,P.Ridao,R.Garcia and J.Batlle67

4.1 Introduction67

4.2 Principles of behaviour-based control systems69

4.2.1 Coordination71

4.2.2 Adaptation72

4.3 Control architecture72

4.3.1 Hybrid coordination of behaviours73

4.3.2 Reinforcement learning-based behaviours75

4.4 Experimental set-up76

4.4.1 URIS UUV76

4.4.2 Set-up78

4.4.3 Software architecture78

4.4.4 Computer vision as a navigation tool79

4.5 Results80

4.5.1 Target tracking task80

4.5.2 Exploration and mapping of unknown environments82

4.6 Conclusions83

5 Thruster control allocation for over-actuated,open-frame underwater vehicles&E.Omerdic and G.N.Roberts87

5.1 Introduction87

5.2 Problem formulation88

5.3 Nomenclature90

5.3.1 Constrained control subset Ω90

5.3.2 Attainable command set Φ91

5.4 Pseudoinverse92

5.5 Fixed-point iteration method95

5.6 Hybrid approach96

5.7 Application to thruster control allocation for over-actuated thruster-propelled UVs98

5.8 Conclusions103

6 Switching-based supervisory control of underwater vehicles&G.Ippoliti,L.Jetto and S.Longhi105

6.1 Introduction105

6.2 Multiple models switching-based supervisory control106

6.3 The EBSC approach109

6.3.1 An implementation aspect of the EBSC110

6.4 The HSSC approach111

6.4.1 The switching policy111

6.5 Stability analysis112

6.5.1 Estimation-based supervisory control112

6.5.2 Hierarchically supervised switching control113

6.6 The ROV model114

6.6.1 The linearised model116

6.7 Numerical results116

6.8 Conclusions121

7 Navigation,guidance and control of the Hammerhead autonomous underwater vehicle&D.Loebis,W.Naeem,R.Sutton,J.Chudley and A.Tiano127

7.1 Introduction127

7.2 The Hammerhead AUV navigation system129

7.2.1 Fuzzy Kalman filter129

7.2.2 Fuzzy logic observer130

7.2.3 Fuzzy membership functions optimisation131

7.2.4 Implementation results131

7.2.5 GPS/INS navigation136

7.3 System modelling145

7.3.1 Identification results146

7.4 Guidance147

7.5 Hammerhead autopilot design148

7.5.1 LQG/LTR controller design149

7.5.2 Model predictive control150

7.6 Concluding remarks155

8 Robust control of autonomous underwater vehicles and verification on a tethered flight vehicle&Z.Feng and R.Allen161

8.1 Introduction161

8.2 Design of robust autopilots for torpedo-shaped AUVs162

8.2.1 Dynamics of Subzero Ⅲ (excluding tether)163

8.2.2 Plant models for control design165

8.2.3 Design of reduced-order autopilots166

8.3 Tether compensation for Subzero Ⅲ169

8.3.1 Composite control scheme169

8.3.2 Evaluation of tether effects170

8.3.3 Reduction of tether effects177

8.3.4 Verification of composite control by nonlinear simulations179

8.4 Verification of robust autopilots via field tests181

8.5 Conclusions183

9 Low-cost high-precision motion control for ROVs&M.Caccia187

9.1 Introduction187

9.2 Related research189

9.2.1 Modelling and identification189

9.2.2 Guidance and control189

9.2.3 Sensing technologies190

9.3 Romeo ROV mechanical design192

9.4 Guidance and control193

9.4.1 Velocity control (dynamics)194

9.4.2 Guidance (task kinematics)195

9.5 Vision-based motion estimation196

9.5.1 Vision system design196

9.5.2 Three-dimensional optical laser triangulation sensor199

9.5.3 Template detection and tracking200

9.5.4 Motion from tokens201

9.5.5 Pitch and roll disturbance rejection201

9.6 Experimental results202

9.7 Conclusions208

10 Autonomous manipulation for an intervention AUV&G.Marani,J.Yuh and S.K. Choi217

10.1 Introduction217

10.2 Underwater manipulators218

10.3 Control system218

10.3.1 Kinematic control218

10.3.2 Kinematics,inverse kinematics and redundancy resolution223

10.3.3 Resolved motion rate control223

10.3.4 Measure of manipulability224

10.3.5 Singularity avoidance for a single task225

10.3.6 Extension to inverse kinematics with task priority227

10.3.7 Example230

10.3.8 Collision and joint limits avoidance230

10.4 Vehicle communication and user interface232

10.5 Application example233

10.6 Conclusions236

11 AUV ‘r2D4’,its operation,and road map for AUV development&T.Ura239

11.1 Introduction239

11.2 AUV ‘r2D4’ and its no.16 dive at Rota Underwater Volcano240

11.2.1 R-Two project240

11.2.2 AUV ‘r2D4’241

11.2.3 Dive to Rota Underwater Volcano244

11.3 Future view of AUV research and development248

11.3.1 AUV diversity250

11.3.2 Road map of R&D of AUVs252

11.4 Acknowledgements253

12 Guidance and control of a biomimetic-autonomous underwater vehicle&J.Guo255

12.1 Introduction255

12.2 Dynamic modelling257

12.2.1 Rigid body dynamics258

12.2.2 Hydrodynamics263

12.3 Guidance and control of the BAUV265

12.3.1 Guidance of the BAUV266

12.3.2 Controller design267

12.3.3 Experiments270

12.4 Conclusions273

13 Seabed-relative navigation by hybrid structured lighting&F.Dalgleish,S.Tetlow and R.L.Allwood277

13.1 Introduction277

13.2 Description of sensor configuration279

13.3 Theory279

13.3.1 Laser stripe for bathymetric and reflectivity seabed profiling281

13.3.2 Region-based tracker283

13.4 Constrained motion testing283

13.4.1 Laser altimeter mode283

13.4.2 Dynamic performance of the laser altimeter process285

13.4.3 Dynamic performance of region-based tracker286

13.4.4 Dynamic imaging performance288

13.5 Summary291

13.6 Acknowledgements291

14 Advances in real-time spatio-temporal 3D data visualisation for underwater robotic exploration&S.C.Martin,L.L.Whitcomb,R.Arsenault,M.Plumlee and C. Ware293

14.1 Introduction293

14.1.1 The need for real-time spatio-temporal display of quantitative oceanographic sensor data294

14.2 System design and implementation295

14.2.1 Navigation295

14.2.2 Real-time spatio-temporal data display with GeoZui3D295

14.2.3 Real-time fusion of navigation data and scientific sensor data297

14.3 Replay of survey data from Mediterranean expedition300

14.4 Comparison of real-time system implemented on the JHU ROV to a laser scan301

14.4.1 Real-time survey experimental set-up301

14.4.2 Laser scan experimental set-up302

14.4.3 Real-time system experimental results303

14.4.4 Laser scan experimental results303

14.4.5 Comparison of laser scan to real-time system305

14.5 Preliminary field trial on the Jason 2 ROV305

14.6 Conclusions and future work308

15 Unmanned surface vehicles-game changing technology for naval operations&S.J.Corfield and J.M.Young311

15.1 Introduction311

15.2 Unmanned surface vehicle research and development312

15.3 Summary of major USV subsystems313

15.3.1 The major system partitions313

15.3.2 Major USV subsystems314

15.3.3 Hulls314

15.3.4 Auxiliary structures316

15.3.5 Engines,propulsion subsystems and fuel systems316

15.3.6 USV autonomy,mission planning and navigation,guidance and control317

15.4 USV payload systems318

15.5 USV launch and recovery systems319

15.6 USV development examples:MIMIR,SWIMS and FENRIR319

15.6.1 The MIMIR USV system319

15.6.2 The SWIMS USV system321

15.6.3 The FENRIR USV system and changing operationalscenarios325

15.7 The game changing potential of USVs326

16 Modelllng,simulation and control of an autonomous surface marine vehicle for surveying applications Measuring Dolphin MESSIN&J.Majohr and T.Buch329

16.1 Introduction and objectives329

16.2 Hydromechanical conception of the MESSIN330

16.3 Electrical developments of the MESSIN332

16.4 Hierarchical steering system and overall steering structure333

16.5 Positioning and navigation336

16.6 Modelling and identification337

16.6.1 Second-order course model [16]338

16.6.2 Fourth-order track model [17]338

16.7 Route planning,mission control and automatic control342

16.8 Implementation and simulation344

16.9 Test results and application346

17 Vehicle and mission control of single and multiple autonomous marine robots&A.Pascoal,C.Silvestre and P.Oliveira353

17.1 Introduction353

17.2 Marine vehicles354

17.2.1 The Infante AUV354

17.2.2 The Delfim ASC355

17.2.3 The Sirene underwater shuttle356

17.2.4 The Caravela 2000 autonomous research vessel357

17.3 Vehicle control358

17.3.1 Control problems:motivation359

17.3.2 Control problems:design techniques362

17.4 Mission control and operations at sea375

17.4.1 The CORAL mission control system376

17.4.2 Missions at sea379

17.5 Conclusions380

18 Wave-piercing autonomous vehicles&H.Young,J.Ferguson,S.Phillips and D.Hook387

18.1 Introduction387

18.1.1 Abbreviations and definitions387

18.1.2 Concepts388

18.1.3 Historical development388

18.2 Wave-piercing autonomous underwater vehicles390

18.2.1 Robotic mine-hunting concept391

18.2.2 Early tests393

18.2.3 US Navy RMOP393

18.2.4 The Canadian ‘Dorado’ and development of the French ‘SeaKeeper’394

18.3 Wave-piercing autonomous surface vehicles396

18.3.1 Development programme398

18.3.2 Command and control400

18.3.3 Launch and recovery401

18.3.4 Applications402

18.4 Daughter vehicles403

18.4.1 Applications404

18.5 Mobile buoys405

18.5.1 Applications405

18.6 Future development of unmanned wave-piercing vehicles405

19 Dynamics,control and coordination of underwater gliders&R.Bachmayer,N.E.Leonard,P.Bhatta,E.Fiorelli and J.G.Graver407

19.1 Introduction407

19.2 A mathematical model for underwater gliders408

19.3 Glider stability and control412

19.3.1 Linear analysis412

19.3.2 Phugoid-mode model415

19.4 Slocum glider model417

19.4.1 The Slocum glider417

19.4.2 Glider identification419

19.5 Coordinated glider control and operations424

19.5.1 Coordinating gliders with virtual bodies and artificial potentials425

19.5.2 VBAP glider implementation issues426

19.5.3 AOSN Ⅱ sea trials426

19.6 Final remarks429

Index433

热门推荐