图书介绍
Advances in Unmanned Marine VehiclesPDF|Epub|txt|kindle电子书版本网盘下载
- 著
- 出版社: Institution of Electrical Engineers
- ISBN:0863414508
- 出版时间:2006
- 标注页数:441页
- 文件大小:58MB
- 文件页数:460页
- 主题词:
PDF下载
下载说明
Advances in Unmanned Marine VehiclesPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Editorial:navigation,guidance and control of unmanned marine vehicles&G.N.Roberts and R.Sutton1
1.1 Introduction1
1.2 Contributions4
1.3 Concluding Remarks11
2 Nonlinear modelling,identification and control of UUVs&T.I.Fossen and A.Ross13
2.1 Introduction13
2.1.1 Notation13
2.2 Modelling of UUVs14
2.2.1 Six DOF kinematic equations14
2.2.2 Kinetics16
2.2.3 Equations of motion16
2.2.4 Equations of motion including ocean currents19
2.2.5 Longitudinal and lateral models20
2.3 Identification of UUVs24
2.3.1 A priori estimates of rigid-body parameters25
2.3.2 A priori estimates of hydrodynamic added mass25
2.3.3 Identification of damping terms25
2.4 Nonlinear control of UUVs31
2.4.1 Speed,depth and pitch control32
2.4.2 Heading control37
2.4.3 Alternative methods of control40
2.5 Conclusions40
3 Guidance laws,obstacle avoidance and artificial potential functions&A.J.Healey43
3.1 Introduction43
3.2 Vehicle guidance,track following44
3.2.1 Vehicle steering model45
3.2.2 Line of sight guidance46
3.2.3 Cross-track error47
3.2.4 Line of sight with cross-track error controller49
3.2.5 Sliding mode cross-track error guidance50
3.2.6 Large heading error mode51
3.2.7 Track path transitions52
3.3 Obstacle avoidance52
3.3.1 Planned avoidance deviation in path52
3.3.2 Reactive avoidance54
3.4 Artificial potential functions59
3.4.1 Potential function for obstacle avoidance61
3.4.2 Multiple obstacles62
3.5 Conclusions64
3.6 Acknowledgements65
4 Behaviour control of UUVs&M.Carreras,P.Ridao,R.Garcia and J.Batlle67
4.1 Introduction67
4.2 Principles of behaviour-based control systems69
4.2.1 Coordination71
4.2.2 Adaptation72
4.3 Control architecture72
4.3.1 Hybrid coordination of behaviours73
4.3.2 Reinforcement learning-based behaviours75
4.4 Experimental set-up76
4.4.1 URIS UUV76
4.4.2 Set-up78
4.4.3 Software architecture78
4.4.4 Computer vision as a navigation tool79
4.5 Results80
4.5.1 Target tracking task80
4.5.2 Exploration and mapping of unknown environments82
4.6 Conclusions83
5 Thruster control allocation for over-actuated,open-frame underwater vehicles&E.Omerdic and G.N.Roberts87
5.1 Introduction87
5.2 Problem formulation88
5.3 Nomenclature90
5.3.1 Constrained control subset Ω90
5.3.2 Attainable command set Φ91
5.4 Pseudoinverse92
5.5 Fixed-point iteration method95
5.6 Hybrid approach96
5.7 Application to thruster control allocation for over-actuated thruster-propelled UVs98
5.8 Conclusions103
6 Switching-based supervisory control of underwater vehicles&G.Ippoliti,L.Jetto and S.Longhi105
6.1 Introduction105
6.2 Multiple models switching-based supervisory control106
6.3 The EBSC approach109
6.3.1 An implementation aspect of the EBSC110
6.4 The HSSC approach111
6.4.1 The switching policy111
6.5 Stability analysis112
6.5.1 Estimation-based supervisory control112
6.5.2 Hierarchically supervised switching control113
6.6 The ROV model114
6.6.1 The linearised model116
6.7 Numerical results116
6.8 Conclusions121
7 Navigation,guidance and control of the Hammerhead autonomous underwater vehicle&D.Loebis,W.Naeem,R.Sutton,J.Chudley and A.Tiano127
7.1 Introduction127
7.2 The Hammerhead AUV navigation system129
7.2.1 Fuzzy Kalman filter129
7.2.2 Fuzzy logic observer130
7.2.3 Fuzzy membership functions optimisation131
7.2.4 Implementation results131
7.2.5 GPS/INS navigation136
7.3 System modelling145
7.3.1 Identification results146
7.4 Guidance147
7.5 Hammerhead autopilot design148
7.5.1 LQG/LTR controller design149
7.5.2 Model predictive control150
7.6 Concluding remarks155
8 Robust control of autonomous underwater vehicles and verification on a tethered flight vehicle&Z.Feng and R.Allen161
8.1 Introduction161
8.2 Design of robust autopilots for torpedo-shaped AUVs162
8.2.1 Dynamics of Subzero Ⅲ (excluding tether)163
8.2.2 Plant models for control design165
8.2.3 Design of reduced-order autopilots166
8.3 Tether compensation for Subzero Ⅲ169
8.3.1 Composite control scheme169
8.3.2 Evaluation of tether effects170
8.3.3 Reduction of tether effects177
8.3.4 Verification of composite control by nonlinear simulations179
8.4 Verification of robust autopilots via field tests181
8.5 Conclusions183
9 Low-cost high-precision motion control for ROVs&M.Caccia187
9.1 Introduction187
9.2 Related research189
9.2.1 Modelling and identification189
9.2.2 Guidance and control189
9.2.3 Sensing technologies190
9.3 Romeo ROV mechanical design192
9.4 Guidance and control193
9.4.1 Velocity control (dynamics)194
9.4.2 Guidance (task kinematics)195
9.5 Vision-based motion estimation196
9.5.1 Vision system design196
9.5.2 Three-dimensional optical laser triangulation sensor199
9.5.3 Template detection and tracking200
9.5.4 Motion from tokens201
9.5.5 Pitch and roll disturbance rejection201
9.6 Experimental results202
9.7 Conclusions208
10 Autonomous manipulation for an intervention AUV&G.Marani,J.Yuh and S.K. Choi217
10.1 Introduction217
10.2 Underwater manipulators218
10.3 Control system218
10.3.1 Kinematic control218
10.3.2 Kinematics,inverse kinematics and redundancy resolution223
10.3.3 Resolved motion rate control223
10.3.4 Measure of manipulability224
10.3.5 Singularity avoidance for a single task225
10.3.6 Extension to inverse kinematics with task priority227
10.3.7 Example230
10.3.8 Collision and joint limits avoidance230
10.4 Vehicle communication and user interface232
10.5 Application example233
10.6 Conclusions236
11 AUV ‘r2D4’,its operation,and road map for AUV development&T.Ura239
11.1 Introduction239
11.2 AUV ‘r2D4’ and its no.16 dive at Rota Underwater Volcano240
11.2.1 R-Two project240
11.2.2 AUV ‘r2D4’241
11.2.3 Dive to Rota Underwater Volcano244
11.3 Future view of AUV research and development248
11.3.1 AUV diversity250
11.3.2 Road map of R&D of AUVs252
11.4 Acknowledgements253
12 Guidance and control of a biomimetic-autonomous underwater vehicle&J.Guo255
12.1 Introduction255
12.2 Dynamic modelling257
12.2.1 Rigid body dynamics258
12.2.2 Hydrodynamics263
12.3 Guidance and control of the BAUV265
12.3.1 Guidance of the BAUV266
12.3.2 Controller design267
12.3.3 Experiments270
12.4 Conclusions273
13 Seabed-relative navigation by hybrid structured lighting&F.Dalgleish,S.Tetlow and R.L.Allwood277
13.1 Introduction277
13.2 Description of sensor configuration279
13.3 Theory279
13.3.1 Laser stripe for bathymetric and reflectivity seabed profiling281
13.3.2 Region-based tracker283
13.4 Constrained motion testing283
13.4.1 Laser altimeter mode283
13.4.2 Dynamic performance of the laser altimeter process285
13.4.3 Dynamic performance of region-based tracker286
13.4.4 Dynamic imaging performance288
13.5 Summary291
13.6 Acknowledgements291
14 Advances in real-time spatio-temporal 3D data visualisation for underwater robotic exploration&S.C.Martin,L.L.Whitcomb,R.Arsenault,M.Plumlee and C. Ware293
14.1 Introduction293
14.1.1 The need for real-time spatio-temporal display of quantitative oceanographic sensor data294
14.2 System design and implementation295
14.2.1 Navigation295
14.2.2 Real-time spatio-temporal data display with GeoZui3D295
14.2.3 Real-time fusion of navigation data and scientific sensor data297
14.3 Replay of survey data from Mediterranean expedition300
14.4 Comparison of real-time system implemented on the JHU ROV to a laser scan301
14.4.1 Real-time survey experimental set-up301
14.4.2 Laser scan experimental set-up302
14.4.3 Real-time system experimental results303
14.4.4 Laser scan experimental results303
14.4.5 Comparison of laser scan to real-time system305
14.5 Preliminary field trial on the Jason 2 ROV305
14.6 Conclusions and future work308
15 Unmanned surface vehicles-game changing technology for naval operations&S.J.Corfield and J.M.Young311
15.1 Introduction311
15.2 Unmanned surface vehicle research and development312
15.3 Summary of major USV subsystems313
15.3.1 The major system partitions313
15.3.2 Major USV subsystems314
15.3.3 Hulls314
15.3.4 Auxiliary structures316
15.3.5 Engines,propulsion subsystems and fuel systems316
15.3.6 USV autonomy,mission planning and navigation,guidance and control317
15.4 USV payload systems318
15.5 USV launch and recovery systems319
15.6 USV development examples:MIMIR,SWIMS and FENRIR319
15.6.1 The MIMIR USV system319
15.6.2 The SWIMS USV system321
15.6.3 The FENRIR USV system and changing operationalscenarios325
15.7 The game changing potential of USVs326
16 Modelllng,simulation and control of an autonomous surface marine vehicle for surveying applications Measuring Dolphin MESSIN&J.Majohr and T.Buch329
16.1 Introduction and objectives329
16.2 Hydromechanical conception of the MESSIN330
16.3 Electrical developments of the MESSIN332
16.4 Hierarchical steering system and overall steering structure333
16.5 Positioning and navigation336
16.6 Modelling and identification337
16.6.1 Second-order course model [16]338
16.6.2 Fourth-order track model [17]338
16.7 Route planning,mission control and automatic control342
16.8 Implementation and simulation344
16.9 Test results and application346
17 Vehicle and mission control of single and multiple autonomous marine robots&A.Pascoal,C.Silvestre and P.Oliveira353
17.1 Introduction353
17.2 Marine vehicles354
17.2.1 The Infante AUV354
17.2.2 The Delfim ASC355
17.2.3 The Sirene underwater shuttle356
17.2.4 The Caravela 2000 autonomous research vessel357
17.3 Vehicle control358
17.3.1 Control problems:motivation359
17.3.2 Control problems:design techniques362
17.4 Mission control and operations at sea375
17.4.1 The CORAL mission control system376
17.4.2 Missions at sea379
17.5 Conclusions380
18 Wave-piercing autonomous vehicles&H.Young,J.Ferguson,S.Phillips and D.Hook387
18.1 Introduction387
18.1.1 Abbreviations and definitions387
18.1.2 Concepts388
18.1.3 Historical development388
18.2 Wave-piercing autonomous underwater vehicles390
18.2.1 Robotic mine-hunting concept391
18.2.2 Early tests393
18.2.3 US Navy RMOP393
18.2.4 The Canadian ‘Dorado’ and development of the French ‘SeaKeeper’394
18.3 Wave-piercing autonomous surface vehicles396
18.3.1 Development programme398
18.3.2 Command and control400
18.3.3 Launch and recovery401
18.3.4 Applications402
18.4 Daughter vehicles403
18.4.1 Applications404
18.5 Mobile buoys405
18.5.1 Applications405
18.6 Future development of unmanned wave-piercing vehicles405
19 Dynamics,control and coordination of underwater gliders&R.Bachmayer,N.E.Leonard,P.Bhatta,E.Fiorelli and J.G.Graver407
19.1 Introduction407
19.2 A mathematical model for underwater gliders408
19.3 Glider stability and control412
19.3.1 Linear analysis412
19.3.2 Phugoid-mode model415
19.4 Slocum glider model417
19.4.1 The Slocum glider417
19.4.2 Glider identification419
19.5 Coordinated glider control and operations424
19.5.1 Coordinating gliders with virtual bodies and artificial potentials425
19.5.2 VBAP glider implementation issues426
19.5.3 AOSN Ⅱ sea trials426
19.6 Final remarks429
Index433