图书介绍
图论基础PDF|Epub|txt|kindle电子书版本网盘下载
![图论基础](https://www.shukui.net/cover/9/30720911.jpg)
- 张海良,苏岐芳,林荣斐编著 著
- 出版社: 北京:清华大学出版社
- ISBN:9787302241638
- 出版时间:2011
- 标注页数:115页
- 文件大小:4MB
- 文件页数:122页
- 主题词:图论
PDF下载
下载说明
图论基础PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Chapter 1 Basic concepts1
1.1 Graph and simple graph1
1.2 Graph operations3
1.3 Isomorphism7
1.4 Incident and adjacent matrix7
1.5 The spectrum of graph10
1.6 The spectrum of several graphs16
1.7 Results from matrix theory19
1.8 About the largest zero of characteristic polynomials22
1.9 Spectrum radius28
Chapter 2 path and cycle30
2.1 The path30
2.2 The cycle33
2.3 The diameter of a graph and its complement graph36
Chapter 3 Tree39
3.1 Tree39
3.2 Spanning tree41
3.3 A bound for the tree number of regular graphs47
3.4 Cycle space and bound space of a graph48
Chapter 4 Connectivity51
4.1 Cut edges51
4.2 Cut vertex52
4.3 Block55
4.4 Connectivity57
Chapter 5 Euler and Hamilton graphs60
5.1 Euler path and circuits60
5.2 Hamilton graph62
Chapter 6 Matching and matching polynomial66
6.1 Matching66
6.2 Bipartite graph and perfect matching67
6.3 Matching polynomial69
6.4 The relation between spectrum and matching polynomial72
6.5 Relation between several graphs74
6.6 Several matching equivalent and matching unique graphs75
6.7 The Hosoya index of several graphs76
6.8 Two trees with minimal Hosoya index79
6.9 Recent results in matching83
Chapter 7 Laplacian and Quasi-Laplacian spectrum85
7.1 Sigma function85
7.2 The spanning tree and sigma function87
7.3 Quasi-Laplacian Spectrum88
7.4 Basic lemmas89
7.5 Main results90
7.6 Three different spectrum of regular graphs96
Chapter 8 More theorems form matrix theory100
8.1 The irreducible matrix100
8.2 Cauchy's interlacing theorem102
8.3 The eigenvalues of A(G)and graph structure103
Chapter 9 Chromatic polynomial105
9.1 Induction105
9.2 Two different formula for chromatic polynomial107
9.3 Chromatic polynomials for several type of graphs109
9.4 Estimate the color number110
References112
Bibliography115