图书介绍

国外信息科学与技术优秀图书系列 信息论基础 英文PDF|Epub|txt|kindle电子书版本网盘下载

国外信息科学与技术优秀图书系列 信息论基础 英文
  • (加)RaymondW.Yeung著 著
  • 出版社: 北京:科学出版社
  • ISBN:9787030344564
  • 出版时间:2012
  • 标注页数:412页
  • 文件大小:11MB
  • 文件页数:432页
  • 主题词:信息论-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

国外信息科学与技术优秀图书系列 信息论基础 英文PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1.THE SCIENCE OF INFORMATION1

2.INFORMATION MEASURES5

2.1 Independence and Markov Chains5

2.2 Shannon's Information Measures10

2.3 Continuity of Shannon's Information Measures16

2.4 Chain Rules17

2.5 Informational Divergence19

2.6 The Basic Inequalities23

2.7 Some Useful Information Inequalities25

2.8 Fano's Inequality28

2.9 Entropy Rate of Stationary Source32

Problems36

Historical Notes39

3.ZERO-ERROR DATA COMPRESSION41

3.1 The Entropy Bound42

3.2 Prefix Codes45

3.2.1 Definition and Existence45

3.2.2 Huffman Codes48

3.3 Redundancy of Prefix Codes54

Problems58

Historical Notes59

4.WEAK TYPICALITY61

4.1 The Weak AEP61

4.2 The Source Coding Theorem64

4.3 Efficient Source Coding66

4.4 The Shannon-McMillan-Breiman Theorem68

Problems70

Historical Notes71

5.STRONG TYPICALITY73

5.1 Strong AEP73

5.2 Strong Typicality Versus Weak Typicality81

5.3 Joint Typicality82

5.4 An Interpretation of the Basic Inequalities92

Problems93

Historical Notes94

6.THE I-MEASURE95

6.1 Preliminaries96

6.2 The I-Measure for Two Random Variables97

6.3 Construction of the I-Measure μ*100

6.4 μ*Can be Negative103

6.5 Information Diagrams105

6.6 Examples of Applications112

Appendix 6.A:A Variation of the Inclusion-Exclusion Formula119

Problems121

Historical Notes124

7.MARKOV STRUCTURES125

7.1 Conditional Mutual Independence126

7.2 Full Conditional Mutual Independence135

7.3 Markov Random Field140

7.4 Markov Chain143

Problems146

Historical Notes147

8.CHANNEL CAPACITY149

8.1 Discrete Memoryless Channels153

8.2 The Channel Coding Theorem158

8.3 The Converse160

8.4 Achievability of the Channel Capacity166

8.5 A Discussion171

8.6 Feedback Capacity174

8.7 Separation of Source and Channel Coding180

Problems183

Historical Notes186

9.RATE-DISTORTION THEORY187

9.1 Single-Letter Distortion Measures188

9.2 The Rate-Distortion Function R(D)191

9.3 The Rate-Distortion Theorem196

9.4 The Converse204

9 5 Achievability of RI(D)206

Problems212

Historical Notes214

10.THE BLAHUT-ARIMOTO ALGORITHMS215

10.1 Alternating Optimization216

10.2 The Algorithms218

10.2.1 Channel Capacity218

10.2.2 The Rate-Distortion Function223

10.3 Convergence226

10.3.1 A Sufficient Condition227

10.3.2 Convergence to the Channel Capacity230

Problems231

Historical Notes231

11.SINGLE-SOURCE NETWORK CODING233

11.1 A Point-to-Point Network234

11.2 What is Network Coding?236

11.3 A Network Code240

11.4 The Max-Flow Bound242

11.5 Achievability of the Max-Flow Bound245

11.5.1 Acyclic Networks246

11.5.2 Cyclic Networks251

Problems259

Historical Notes262

12.INFORMATION INEQUALITIES263

12.1 The Region Γ* n265

12.2 Information Expressions in Canonical Form267

12.3 A Geometrical Framework269

12.3.1 Unconstrained Inequalities269

12.3.2 Constrained Inequalities270

12.3.3 Constrained Identities272

12.4 Equivalence of Constrained Inequalities273

12.5 The Implication Problem of Conditional Independence276

Problems277

Historical Notes278

13.SHANNON-TYPE INEQUALITIES279

13.1 The Elemental Inequalities279

13.2 A Linear Programming Approach281

13.2.1 Unconstrained Inequalities283

13.2.2 Constrained Inequalities and Identities284

13.3 A Duality285

13.4 Machine Proving-ITIP287

13.5 Tackling the Implication Problem291

13.6 Minimality of the Elemental Inequalities293

Appendix 13 A:The Basic Inequalities and the Polymatroidal Axioms297

Problems298

Historical Notes300

14.BEYOND SHANNON-TYPE INEQUALITIES301

14.1 Characterizations of Γ* 2,Γ* 3,and ?302

14.2 A Non-Shannon-Type Unconstrained Inequality310

14.3 A Non-Shannon-Type Constrained Inequality315

14.4 Applications321

Problems324

Historical Notes325

15.MULTI-SOURCE NETWORK CODING327

15.1 Two Characteristics328

15.1.1 The Max-Flow Bounds328

15.1.2 Superposition Coding330

15.2 Examples of Application335

15.2.1 Multilevel Diversity Coding335

15.2.2 Satellite Communication Network336

15.3 A Network Code for Acyclic Networks337

15.4 An Inner Bound340

15.5 An Outer Bound342

15.6 The LP Bound and Its Tightness346

15.7 Achievability of Rin350

Appendix 15.A:Approximation of Random Variables with Infinite Alphabets360

Problems361

Historical Notes364

16.ENTROPY AND GROUPS365

16.1 Group Preliminaries366

16.2 Group-Characterizable Entropy Functions372

16.3 A Group Characterization of ?377

16.4 Information Inequalities and Group Inequalities380

Problems384

Historical Notes387

Bibliography389

Index403

热门推荐