图书介绍
射频微电子 原书第2版 英文版PDF|Epub|txt|kindle电子书版本网盘下载
![射频微电子 原书第2版 英文版](https://www.shukui.net/cover/75/30368820.jpg)
- (美)毕查德,(美)拉扎维著 著
- 出版社: 北京:电子工业出版社
- ISBN:9787121176036
- 出版时间:2012
- 标注页数:916页
- 文件大小:272MB
- 文件页数:936页
- 主题词:射频-微电子技术-高等学校-教材-英文
PDF下载
下载说明
射频微电子 原书第2版 英文版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
CHAPTER 1 INTRODUCTION TO RF AND WIRELESS TECHNOLOGY1
1.1 A Wireless World1
1.2 RF Design Is Challenging3
1.3 The Big Picture4
References5
CHAPTER 2 BASIC CONCEPTS IN RF DESIGN7
2.1 General Considerations7
2.1.1 Units in RF Design7
2.1.2 Time Variance9
2.1.3 Nonlinearity12
2.2 Effects of Nonlinearity14
2.2.1 Harmonic Distortion14
2.2.2 Gain Compression16
2.2.3 Cross Modulation20
2.2.4 Intermodulation21
2.2.5 Cascaded Nonlinear Stages29
2.2.6 AM/PM Conversion33
2.3 Noise35
2.3.1 Noise as a Random Process36
2.3.2 Noise Spectrum37
2.3.3 Effect of Transfer Function on Noise39
2.3.4 Device Noise40
2.3.5 Representation of Noise in Circuits46
2.4 Sensitivity and Dynamic Range58
2.4.1 Sensitivity59
2.4.2 Dynamic Range60
2.5 Passive Impedance Transformation62
2.5.1 Quality Factor63
2.5.2 Series-to-Parallel Conversion63
2.5.3 Basic Matching Networks65
2.5.4 Loss in Matching Networks69
2.6 Scattering Parameters71
2.7 Analysis of Nonlinear Dynamic Systems75
2.7.1 Basic Considerations75
2.8 Volterra Series77
2.8.1 Method of Nonlinear Currents81
References86
Problems86
CHAPTER 3 COMMUNICATION CONCEPTS91
3.1 General Considerations91
3.2 Analog Modulation93
3.2.1 Amplitude Modulation93
3.2.2 Phase and Frequency Modulation95
3.3 Digital Modulation99
3.3.1 Intersymbol Interference101
3.3.2 Signal Constellations105
3.3.3 Quadrature Modulation107
3.3.4 GMSK and GFSK Modulation112
3.3.5 Quadrature Amplitude Modulation114
3.3.6 Orthogonal Frequency Division Multiplexing115
3.4 Spectral Regrowth118
3.5 Mobile RF Communications119
3.6 Multiple Access Techniques123
3.6.1 Time and Frequency Division Duplexing123
3.6.2 Frequency-Division Multiple Access125
3.6.3 Time-Division Multiple Access125
3.6.4 Code-Division Multiple Access126
3.7 Wireless Standards130
3.7.1 GSM132
3.7.2 IS-95 CDMA137
3.7.3 Wideband CDMA139
3.7.4 Bluetooth143
3.7.5 IEEE802.11a/b/g147
3.8 Appendix Ⅰ:Differential Phase Shift Keying151
References152
Problems152
CHAPTER 4 TRANSCEIVER ARCHITECTURES155
4.1 General Considerations155
4.2 Receiver Architectures160
4.2.1 Basic Heterodyne Receivers160
4.2.2 Modern Heterodyne Receivers171
4.2.3 Direct-Conversion Receivers179
4.2.4 Image-Reject Receivers200
4.2.5 Low-IF Receivers214
4.3 Transmitter Architectures226
4.3.1 General Considerations226
4.3.2 Direct-Conversion Transmitters227
4.3.3 Modern Direct-Conversion Transmitters238
4.3.4 Heterodyne Transmitters244
4.3.5 Other TX Architectures248
4.4 OOK Transceivers248
References249
Problems250
CHAPTER 5 LOW-NOISE AMPLIFIERS255
5.1 General Considerations255
5.2 Problem of Input Matching263
5.3 LNA Topologies266
5.3.1 Common-Source Stage with Inductive Load266
5.3.2 Common-Source Stage with Resistive Feedback269
5.3.3 Common-Gate Stage272
5.3.4 Cascode CS Stage with Inductive Degeneration284
5.3.5 Variants of Common-Gate LNA296
5.3.6 Noise-Cancelling LNAs300
5.3.7 Reactance-Cancelling LNAs303
5.4 Gain Switching305
5.5 Band Switching312
5.6 High-IP2 LNAs313
5.6.1 Differential LNAs314
5.6.2 Other Methods of IP2 Improvement323
5.7 Nonlinearity Calculations325
5.7.1 Degenerated CS Stage325
5.7.2 Undegenerated CS Stage329
5.7.3 Differential and Quasi-Differential Pairs331
5.7.4 Degenerated Differential Pair332
References333
Problems333
CHAPTER 6 MIXERS337
6.1 General Considerations337
6.1.1 Performance Parameters338
6.1.2 Mixer Noise Figures343
6.1.3 Single-Balanced and Double-Balanced Mixers348
6.2 Passive Downconversion Mixers350
6.2.1 Gain350
6.2.2 LO Self-Mixing357
6.2.3 Noise357
6.2.4 Input Impedance364
6.2.5 Current-Driven Passive Mixers366
6.3 Active Downconversion Mixers368
6.3.1 Conversion Gain370
6.3.2 Noise in Active Mixers377
6.3.3 Linearity387
6.4 Improved Mixer Topologies393
6.4.1 Active Mixers with Current-Source Helpers393
6.4.2 Active Mixers with Enhanced Transconductance394
6.4.3 Active Mixers with High IP2397
6.4.4 Active Mixers with Low Flicker Noise405
6.5 Upconversion Mixers408
6.5.1 Performance Requirements408
6.5.2 Upconversion Mixer Topologies409
References424
Problems425
CHAPTER 7 PASSIVE DEVICES429
7.1 General Considerations429
7.2 Inductors431
7.2.1 Basic Structure431
7.2.2 Inductor Geometries435
7.2.3 Inductance Equations436
7.2.4 Parasitic Capacitances439
7.2.5 Loss Mechanisms444
7.2.6 Inductor Modeling455
7.2.7 Alternative Inductor Structures460
7.3 Transformers470
7.3.1 Transformer Structures470
7.3.2 Effect of Coupling Capacitance475
7.3.3 Transformer Modeling475
7.4 Transmission Lines476
7.4.1 T-Line Structures478
7.5 Varactors483
7.6 Constant Capacitors490
7.6.1 MOS Capacitors491
7.6.2 Metal-Plate Capacitors493
References495
Problems496
CHAPTER 8 OSCILLATORS497
8.1 Performance Parameters497
8.2 Basic Principles501
8.2.1 Feedback View of Oscillators502
8.2.2 One-Port View of Oscillators508
8.3 Cross-Coupled Oscillator511
8.4 Three-Point Oscillators517
8.5 Voltage-Controlled Oscillators518
8.5.1 Tuning Range Limitations521
8.5.2 Effect of Varactor Q522
8.6 LC VCOs with Wide Tuning Range524
8.6.1 VCOs with Continuous Tuning524
8.6.2 Amplitude Variation with Frequency Tuning532
8.6.3 Discrete Tuning532
8.7 Phase Noise536
8.7.1 Basic Concepts536
8.7.2 Effect of Phase Noise539
8.7.3 Analysis of Phase Noise:Approach Ⅰ544
8.7.4 Analysis of Phase Noise:Approach Ⅱ557
8.7.5 Noise of Bias Current Source565
8.7.6 Figures of Merit of VCOs570
8.8 Design Procedure571
8.8.1 Low-Noise VCOs573
8.9 LO Interface575
8.10 Mathematical Model of VCOs577
8.11 Quadrature Oscillators581
8.11.1 Basic Concepts581
8.11.2 Properties of Coupled Oscillators584
8.11.3 Improved Quadrature Oscillators589
8.12 Appendix Ⅰ:Simulation of Quadrature Oscillators592
References593
Problems594
CHAPTER 9 PHASE-LOCKED LOOPS597
9.1 Basic Concepts597
9.1.1 Phase Detector597
9.2 Type-Ⅰ PLLs600
9.2.1 Alignment of a VCO's Phase600
9.2.2 Simple PLL601
9.2.3 Analysis of Simple PLL603
9.2.4 Loop Dynamics606
9.2.5 Frequency Multiplication609
9.2.6 Drawbacks of Simple PLL611
9.3 Type-Ⅱ PLLs611
9.3.1 Phase/Frequency Detectors612
9.3.2 Charge Pumps614
9.3.3 Charge-Pump PLLs615
9.3.4 Transient Response620
9.3.5 Limitations of Continuous-Time Approximation622
9.3.6 Frequency-Multiplying CPPLL623
9.3.7 Higher-Order Loops625
9.4 PFD/CP Nonidealities627
9.4.1 UP and Down Skew and Width Mismatch627
9.4.2 Voltage Compliance630
9.4.3 Charge Injection and Clock Feedthrough630
9.4.4 Random Mismatch between Up and Down Currents632
9.4.5 Channel-Length Modulation633
9.4.6 Circuit Techniques634
9.5 Phase Noise in PLLs638
9.5.1 VCO Phase Noise638
9.5.2 Reference Phase Noise643
9.6 Loop Bandwidth645
9.7 Design Procedure646
9.8 Appendix Ⅰ:Phase Margin of Type-Ⅱ PLLs647
References651
Problems652
CHAPTER 10 INTEGER-N FREQUENCY SYNTHESIZERS655
10.1 General Considerations655
10.2 Basic Integer-N Synthesizer659
10.3 Settling Behavior661
10.4 Spur Reduction Techniques664
10.5 PLL-Based Modulation667
10.5.1 In-Loop Modulation667
10.5.2 Modulation by Offset PLLs670
10.6 Divider Design673
10.6.1 Pulse Swallow Divider674
10.6.2 Dual-Modulus Dividers677
10.6.3 Choice of Prescaler Modulus682
10.6.4 Divider Logic Styles683
10.6.5 Miller Divider699
10.6.6 Injection-Locked Dividers707
10.6.7 Divider Delay and Phase Noise709
References712
Problems713
CHAPTER 11 FRACTIONAL-N SYNTHESIZERS715
11.1 Basic Concepts715
11.2 Randomization and Noise Shaping718
11.2.1 Modulus Randomization718
11.2.2 Basic Noise Shaping722
11.2.3 Higher-Order Noise Shaping728
11.2.4 Problem of Out-of-Band Noise732
11.2.5 Effect of Charge Pump Mismatch733
11.3 Quantization Noise Reduction Techniques738
11.3.1 DAC Feedforward738
11.3.2 Fractional Divider742
11.3.3 Reference Doubling743
11.3.4 Multiphase Frequency Division745
11.4 Appendix Ⅰ:Spectrum of Quantization Noise748
References749
Problems749
CHAPTER 12 POWER AMPLIFIERS751
12.1 General Considerations751
12.1.1 Effect of High Currents754
12.1.2 Efficiency755
12.1.3 Linearity756
12.1.4 Single-Ended and Differential PAs758
12.2 Classification of Power Amplifiers760
12.2.1 Class A Power Amplifiers760
12.2.2 Class B Power Amplifiers764
12.2.3 Class C Power Amplifiers768
12.3 High-Efficiency Power Amplifiers770
12.3.1 Class A Stage with Harmonic Enhancement771
12.3.2 Class E Stage772
12.3.3 Class F Power Amplifiers775
12.4 Cascode Output Stages776
12.5 Large-Signal Impedance Matching780
12.6 Basic Linearization Techniques782
12.6.1 Feedforward783
12.6.2 Cartesian Feedback786
12.6.3 Predistortion787
12.6.4 Envelope Feedback788
12.7 Polar Modulation790
12.7.1 Basic Idea790
12.7.2 Polar Modulation Issues793
12.7.3 Improved Polar Modulation796
12.8 Outphasing802
12.8.1 Basic Idea802
12.8.2 Outphasing Issues805
12.9 Doherty Power Amplifier811
12.10 Design Examples814
12.10.1 Cascode PA Examples815
12.10.2 Positive-Feedback PAs819
12.10.3 PAs with Power Combining821
12.10.4 Polar Modulation PAs824
12.10.5 Outphasing PA Example826
References830
Problems831
CHAPTER 13 TRANSCEIVER DESIGN EXAMPLE833
13.1 System-Level Considerations833
13.1.1 Receiver834
13.1.2 Transmitter838
13.1.3 Frequency Synthesizer840
13.1.4 Frequency Planning844
13.2 Receiver Design848
13.2.1 LNA Design849
13.2.2 Mixer Design851
13.2.3 AGC856
13.3 TX Design861
13.3.1 PA Design861
13.3.2 Upconverter867
13.4 Synthesizer Design869
13.4.1 VCO Design869
13.4.2 Divider Design878
13.4.3 Loop Design882
References886
Problems886
INDEX889