图书介绍
时间序列分析实例研究PDF|Epub|txt|kindle电子书版本网盘下载
![时间序列分析实例研究](https://www.shukui.net/cover/69/34477823.jpg)
- 谢忠杰著 著
- 出版社: 世界图书出版公司北京公司
- ISBN:7506273071
- 出版时间:2006
- 标注页数:282页
- 文件大小:24MB
- 文件页数:294页
- 主题词:时间序列分析-英文
PDF下载
下载说明
时间序列分析实例研究PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
PART ONE An Introduction to the Theory and Methods of Time Series Analysis3
Chapter 1.Theory of Stationary Time Series3
1.1 The definition of stationary stochastic processes3
1.2 The spectral representation of covariance function12
1.3 The Hilbert space of second order processes18
1.4 Stochastic integral and the isomorphic relationship between Hξ and the functional space L2(dFξ)21
1.4.1 Orthogonal stochastic measure21
1.4.2 Stochastic integral and the representation of stationary processes22
1.4.3.Karhunen theorem26
1.5 Strong law of large numbers for stationary series28
1.6 Sampling theorem for stochastic stationary processes33
Chapter 2.ARMA Model and Model Fitting36
2.1 ARMA model and the Wold decomposition36
2.2 Orthogonal basis in Hilbert space Hξ41
2.3 The covariance function of ARMA model and Yule-Walker equation47
2.4 Model fitting under the criterion of one-step ahead prediction error53
2.5 M.E.model fitting for observed data63
2.5.1 M.E.model fitting with sample covariance63
2.5.2 Order selection problem65
Chapter 3.Prediction,Filtering and Spectral Analysis of Time Series72
3.1 Prediction of time series72
3.1.1 The prediction formula for AR models74
3.1.2 The prediction formula for ARMA models78
3.2 The linear filtering of time series81
3.3 Spectral analysis of time series91
3.3.1 Theory and methods of hidden periodicities analysis92
3.3.2 Theory and methods of spectral density estimations100
PART TWO Case Studies in Time Series Analysis113
Case Ⅰ.Digital Processing of a Dynamic Marine Gravity Meter113
1.Problem statement and working diagram of a dynamic marine gravity meter113
2.The first test for solving the problem114
3.Design a new digital filter under Min-Max criterion120
4.The frequency rectification by filtering129
5.Practical checking in the prospecting field of the East Sea of China132
Case Ⅱ.Digital Filters Design by Maximum Entropy Modelling135
1.Problem statement135
2.Design the filter by maximum entropy modelling139
3.A practical filter design144
Case Ⅲ.The Spectral Analysis of the Visual Evoked Potentials of Normal and Congenital Dull Children(Down's disease)147
1.Introduction147
2.Spectral analysis of VEP records for dull and normal children148
3.Statistical analysis for detection of characteristics153
4.Physiological interpretation157
Appendix Ⅲ159
Case Ⅳ.Statistical Analysis of VEP and AI by the Principal Component Analysis of Time Series in Frequency Domain162
1.Introduction162
2.Principal component analysis in frequency domain and its application in AI analysis165
3.Practical checking169
4.Discussion170
Appendix Ⅳ172
Case Ⅴ.Periodicity Analysis of LH Release in Isolated Pituitary Gland by Hidden Frequency Analysis178
1.Introduction178
2.Statistical analysis of LH release179
3.Practical rhythm analysis of LH release185
4.Discussion187
Case Ⅵ.Statistical Detection of Uranian Ring Signals from the Light Curve of Photoelectric Observation193
1.Introduction193
2.Statistical detection of weak ring signals from the noise background196
3.Discussion204
Case Ⅶ.On the Forecasting of Freight Transportation by a New Model Fitting Procedure of Time Series207
1.Introduction207
2.A new model fitting procedure for freight transportation prediction212
3.Forecasting for freight transportation of practical data218
4.Dicussion221
Appendix Ⅶ226
A.1 On the X-11 processing procedure226
A.2 Simple exponential smoothing predictor231
A.3 Program for fitting a spline function232
Case Ⅷ.The Water Flow Prediction in Xiang River235
1.Introduction235
2.Constructing a prediction formula based on the hidden periodicities by the quantile method236
3.Comparison and discussion241
Appendix Ⅷ247
A.1 Quantile method for detecting the hidden periodicities247
A.2 RMA forecasting method248
Case Ⅸ.Miscellaneous Cases Study250
Ⅸ.1 Long term weather forecasting by seasonal ARIMA model250
Ⅸ.1.1 Some relevant knowledge250
(1)Seasonal ARIMA model250
(2)M.L.E.and M.S.S.E.under the normal distribution252
(3)Powell's algorithm for seeking the extreme value of a convex function254
(4)Roots identification of a polynomial by Jury's method256
Ⅸ.1.2 Modelling and forecasting for the temperature in Shanghai259
Ⅸ.2 Outlier analysis and interpolation of missing data in a measuring system261
Ⅸ.2.1 Basic knowledge on outlier analysis261
Ⅸ.2.2 Interpolation for missing data for AR(p)model267
Ⅸ.2.3 Practical application for a range measuring system269
Bibliography273
Subject Index277