图书介绍
图像分析中的模型和逆问题PDF|Epub|txt|kindle电子书版本网盘下载
![图像分析中的模型和逆问题](https://www.shukui.net/cover/63/34410847.jpg)
- (法)查蒙德著 著
- 出版社: 北京;西安:世界图书出版公司
- ISBN:9787510070198
- 出版时间:2014
- 标注页数:312页
- 文件大小:38MB
- 文件页数:336页
- 主题词:图象分析-研究-英文
PDF下载
下载说明
图像分析中的模型和逆问题PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Introduction1
1.1 About Modeling3
1.1.1 Bayesian Approach3
1.1.2 Inverse Problem8
1.1.3 Energy-Based Formulation10
1.1.4 Models11
1.2 Structure of the Book14
Ⅰ Spline Models21
2 Nonparametric Spline Models23
2.1 Definition23
2.2 Optimization26
2.2.1 Bending Spline26
2.2.2 Spline Under Tension28
2.2.3 Robustness31
2.3 Bayesian Interpretation34
2.4 Choice of Regularization Parameter36
2.5 Approximation Using a Surface39
2.5.1 L-Spline Surface40
2.5.2 Quadratic Energy43
2.5.3 Finite Element Optimization46
3 Parametric Spline Models51
3.1 Representation on a Basis of B-Splines51
3.1.1 Approximation Spline53
3.1.2 Construction of B-Splines54
3.2 Extensions57
3.2.1 Multidimensional Case57
3.2.2 Heteroscedasticity62
3.3 High-Dimensional Splines67
3.3.1 Revealing Directions68
3.3.2 Projection Pursuit Regression70
4 Auto-Associative Models75
4.1 Analysis of Multidimensional Data75
4.1.1 A Classical Approach76
4.1.2 Toward an Alternative Approach80
4.2 Auto-Associative Composite Models82
4.2.1 Model and Algorithm82
4.2.2 Properties84
4.3 Projection Pursuit and Spline Smoothing86
4.3.1 Proiection Index87
4.3.2 Spline Smoothing90
4.4 Illustration93
Ⅱ Markov Models97
5 Fundamental Aspects99
5.1 Definitions99
5.1.1 Finite Markov Fields100
5.1.2 Gibbs Fields101
5.2 Markov-Gibbs Equivalence103
5.3 Examples106
5.3.1 Bending Energy106
5.3.2 Bernoulli Energy107
5.3.3 Gaussian Energy108
5.4 Consistency Problem109
6 Bayesian Estimation113
6.1 Principle113
6.2 Cost Functions118
6.2.1 Cost Function Examples119
6.2.2 Calculation Problems121
7 Simulation and Optimization123
7.1 Simulation124
7.1.1 Homogeneous Markov Chain124
7.1.2 Metropolis Dynamic125
7.1.3 Simulated Gibbs Distribution127
7.2 Stochastic Optimization130
7.3 Probabilistic Aspects134
7.4 Deterministic Optimization138
7.4.1 ICM Algorithm138
7.4.2 Relaxation Algorithms141
8 Parameter Estimation147
8.1 Complete Data148
8.1.1 Maximum Likelihood149
8.1.2 Maximum Pseudolikelihood150
8.1.3 Logistic Estimation153
8.2 Incomplete Data156
8.2.1 Maximum Likelihood157
8.2.2 Gibbsian EM Algorithm161
8.2.3 Bayesian Calibration170
Ⅲ Modeling in Action175
9 Model-Building177
9.1 Multiple Spline Approximation177
9.1.1 Choice of Data and Image Characteristics179
9.1.2 Definition of the Hidden Field181
9.1.3 Building an Energy183
9.2 Markov Modeling Methodology185
9.2.1 Details for Implementation185
10 Degradation in Imaging189
10.1 Denoising190
10.1.1 Models with Explicit Discontinuities190
10.1.2 Models with Implicit Discontinuities198
10.2 Deblurring201
10.2.1 A Particularly Ill-Posed Problem202
10.2.2 Model with Implicit Discontinuities204
10.3 Scatter205
10.3.1 Direct Problem206
10.3.2 Inverse Problem211
10.4 Sensitivity Functions and Image Fusion216
10.4.1 A Restoration Problem217
10.4.2 Transfer Function Estimation221
10.4.3 Estimation of Stained Transfer Function224
11 Detection of Filamentary Entities227
11.1 Valley Detection Principle228
11.1.1 Definitions228
11.1.2 Bayes-Markov Formulation230
11.2 Building the Prior Energy231
11.2.1 Detection Term231
11.2.2 Regularization Term234
11.3 Optimization236
11.4 Extension to the Case of an Image Pair239
12 Reconstruction and Projections243
12.1 Projection Model243
12.1.1 Transmission Tomography243
12.1.2 Emission Tomography246
12.2 Regularized Reconstruction247
12.2.1 Regularization with Explicit Discontinuities248
12.2.2 Three-Dimensional Reconstruction252
12.3 Reconstruction with a Single View256
12.3.1 Generalized Cylinder256
12.3.2 Training the Deformations259
12.3.3 Reconstruction in the Presence of Occlusion261
13 Matching269
13.1 Template and Hidden Outline270
13.1.1 Rigid Transformations270
13.1.2 Spline Model of a Template272
13.2 Elastic Deformations276
13.2.1 Continuous Random Fields276
13.2.2 Probabilistic Aspects282
References289
Author Index301
Subject Index305