图书介绍
AlgebraPDF|Epub|txt|kindle电子书版本网盘下载
- [美]阿延(Artin 著
- 出版社: 机械工业出版社
- ISBN:7111139135
- 出版时间:2004
- 标注页数:618页
- 文件大小:26MB
- 文件页数:636页
- 主题词:代数-英文
PDF下载
下载说明
AlgebraPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Chapter 1 Matrix Operations1
1. The Basic Operations1
2. Row Reduction9
3. Determinants18
4. Permutation Matrices24
5. Cramer’s Rule28
EXERCISES31
Chapter 2 Groups38
1. The Definition of a Group38
2. Subgroups44
3. Isomorphisms48
4. Homomorphisms51
5. Equivalence Relations and Partitions53
6. Cosets57
7. Restriction of a Homomorphism to a Subgroup59
8. Products of Groups61
9. Modular Arithmetic64
10. Quotient Groups66
EXERCISES69
Chapter 3 Vector Spaces78
1. Real Vector Spaces78
2. Abstract Fields82
3. Bases and Dimension87
4. Computation with Bases94
5. Infinite-Dimensional Spaces100
6. Direct Sums102
EXERCISES104
Chapter 4 Linear Transformations109
1. The Dimension Formula109
2. The Matrix of a Linear Transformation111
3. Linear Operators and Eigenvectors115
4. The Characteristic Polynomial120
5. Orthogonal Matrices and Rotations123
6. Diagonalization130
7. Systems of Differential Equations133
8. The Matrix Exponential138
EXERCISES145
Chapter 5 Symmetry155
1. Symmetry of Plane Figures155
2. The Group of Motions of the Plane157
3. Finite Groups of Motions162
4. Discrete Groups of Motions166
5. Abstract Symmetry: Group Operations175
6. The Operation on Cosets178
7. The Counting Formula180
8. Permutation Representations182
9. Finite Subgroups of the Rotation Group184
EXERCISES188
Chapter 6 More Group Theory197
1. The Operations of a Group on Itself197
2. The Class Equation of the Icosahedral Group200
3. Operations on Subsets203
4. The Sylow Theorems205
5. The Groups of Order 12209
6. Computation in the Symmetric Group211
7. The Free Group217
8. Generators and Relations219
9. The Todd-Coxeter Algorithm223
EXERCISES229
Chapter 7 Bilinear Forms237
1. Definition of Bilinear Form237
2. Symmetric Forms: Orthogonality243
3. The Geometry Associated to a Positive Form247
4. Hermitian Forms249
5. The Spectral Theorem253
6. Conics and Quadrics255
7. The Spectral Theorem for Normal Operators259
8. Skew-Symmetric Forms260
9. Summary of Results, in Matrix Notation261
EXERCISES262
Chapter 8 Linear Groups270
1. The Classical Linear Groups270
2. The Special Unitary Group SU2272
3. The Orthogonal Representation of SU2276
4. The Special Linear Group SL2(R)281
5. One-Parameter Subgroups283
6. The Lie Algebra286
7. Translation in a Group292
8. Simple Groups295
EXERCISES300
Chapter 9 Group Representations307
1. Definition of a Group Representation307
2. G-Invariant Forms and Unitary Representations310
3. Compact Groups312
4. G-Invariant Subspaces and Irreducible Representations314
5. Characters316
6. Permutation Representations and the Regular Representation321
7. The Representations of the Icosahedral Group323
8. One-Dimensional Representations325
9. Schur’s Lemma, and Proof of the Orthogonality Relations325
10. Representations of the Group SU2330
EXERCISES335
Chapter 10 Rings345
1. Definition of a Ring345
2. Formal Construction of Integers and Polynomials347
3. Homomorphisms and Ideals353
4. Quotient Rings and Relations in a Ring359
5. Adjunction of Elements364
6. Integral Domains and Fraction Fields368
7. Maximal Ideals370
8. Algebraic Geometry373
EXERCISES379
Chapter 11 Factorization389
1. Factorization of Integers and Polynomials389
2. Unique Factorization Domains, Principal Ideal Domains,and Euclidean Domains392
3. Gauss’s Lemma398
4. Explicit Factorization of Polynomials402
5. Primes in the Ring of Gauss Integers406
6. Algebraic Integers409
7. Factorization in Imaginary Quadratic Fields414
8. Ideal Factorization419
9. The Relation Between Prime Ideals of R and Prime Integers424
10. Ideal Classes in Imaginary Quadratic Fields425
11. Real Quadratic Fields433
12. Some Diophantine Equations437
EXERCISES440
Chapter 12 Modules450
1. The Definition of a Module450
2. Matrices, Free Modules, and Bases452
3. The Principle of Permanence of Identities456
4. Diagonalization of Integer Matrices457
5. Generators and Relations for Modules464
6. The Structure Theorem for Abelian Groups471
7. Application to Linear Operators476
8. Free Modules over Polynomial Rings482
EXERCISES483
Chapter 13 Fields492
1. Examples of Fields492
2. Algebraic and Transcendental Elements493
3. The Degree of a Field Extension496
4. Constructions with Ruler and Compass500
5. Symbolic Adjunction of Roots506
6. Finite Fields509
7. Function Fields515
8. Transcendental Extensions525
9. Algebraically Closed Fields527
EXERCISES530
Chapter 14 Galois Theory537
1. The Main Theorem of Galois Theory537
2. Cubic Equations543
3. Symmetric Functions547
4. Primitive Elements552
5. Proof of the Main Theorem556
6. Quartic Equations560
7. Kummer Extensions565
8. Cyclotomic Extensions567
9. Quintic Equations570
EXERCISES575
Appendix Background Material585
1. Set Theory585
2. Techniques of Proof589
3. Topology593
4. The Implicit Function Theorem597
EXERCISES599
Notation601
Suggestions for Further Reading603
Index607