图书介绍
凝聚态物理 英文 影印版PDF|Epub|txt|kindle电子书版本网盘下载
- 周游著 著
- 出版社:
- ISBN:
- 出版时间:2014
- 标注页数:0页
- 文件大小:66MB
- 文件页数:690页
- 主题词:
PDF下载
下载说明
凝聚态物理 英文 影印版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
CHAPTER 1 Basic Properties of Crystals1
1.1 Crystal Lattices2
1.1.1 Primitive Cell3
1.1.2 UnitCell3
1.1.3 Wigner-SeitzCell3
1.1.4 Lattice Point Group3
1.2 Bravais Lattices in Two and Three Dimensions4
1.2.1 Simple Cubic (sc)Lattice4
1.2.2 Lattice Constants5
1.2.3 Coordination Numbers5
1.2.4 Body-Centered Cubic(bcc)Lattice5
1.2.5 Face-Centered Cubic(fcc)Lattice7
1.2.6 Other Bravais Lattices9
1.3 Lattice Planes and Miller Indices11
1.4 Bravais Lattices and Crystal Structures13
1.4.1 Crystal Structure13
1.4.2 Lattice with a Basis13
1.4.3 Packing Fraction14
1.5 Crystal Derects and Surface Effects14
1.5.1 Crystal Defects14
1.5.2 Surface Effects14
1.6 Some Simple Crystal Structures15
1.6.1 Sodium Chloride Structure15
1.6.2 Cesium Chloride Structure15
1.6.3 Diamond Structure16
1.6.4 Zincblende Structure17
1.6.5 Hexagonal Close-Packed(hcp)Structure17
1.7 Bragg Diffraction19
1.8 Laue Method20
1.9 Reciprocal Lattice21
1.9.1 Definition21
1.9.2 Properties of the Reciprocal Lattice22
1.9.3 Alternative Formulation of the Laue Condition25
1.10 Brillouin Zones27
1.10.1 Definition27
1.10.2 One-Dimensional Lattice28
1.10.3 Two-Dimensional Square Lattice28
1.10.4 bcc Lattice29
1.10 5 fcc Lattice30
1.11 Diffraction by a Crystal Lattice with a Basis31
1.11.1 Theory31
1.11.2 Geornetrical Structure Factor32
1.11.3 Application to bcc Lattice32
1.11.4 Application to fcc Lattice33
1.11.5 The Atomic Scattering Factor or Form Factor33
Problems34
References35
CHAPTER 2 Phonons and Lattice Vibrations37
2.1 Lattice Dynamics37
2.1.1 Theorv37
2.1.2 Normal Modes of a One-Dimensional Monoatomic Lattice41
2.1.3 Normal Modes of a One-Dimensional Chain with a Basis44
2.2 Lattice Specific Heat48
2.2.1 Theory48
2.2.2 The Debye Model of Specific Heat49
2.2.3 The Einstein Model of Specific Heat52
2.3 Second Quantization53
2.3.1 Occupation Number Representation53
2.3.2 Creation and Annihilation Operators54
2.3.3 Field Operators and the Hamiltonian58
2.4 Quantization of Lattice Waves61
2.4.1 Formulation61
2.4.2 Quantization of Lattice Waves65
Problems66
References68
CHAPTER 3 Free Electron Model71
3.1 The Classical(Drude)Model of a Metal71
3.2 Sommerfeld Model73
3.2.1 Introduction73
3.2.2 Fermi Distribution Function74
3.2.3 Density Operator75
3.2.4 Free Electron Fermi Gas77
3.2.5 Ground-State Energy of the Electron Gas79
3.2.6 Density of Electron States81
3.3 Fermi Energy and the Chemical Potential82
3.4 Specific Heat of the Electron Gas84
3.5 DC Electrical Conductivity86
3.6 The Hall Effect87
3.7 Failures of the Free Electron Model89
Problems90
References93
CHAPTER 4 Nearly Free Electron Model95
4.1 Electrons in a Weak Periodic Potential96
4.1.1 Introduction96
4.1.2 Plane Wave Solutions97
4.2 Bloch Functions and Bloch Theorem99
4.3 Reduced,Repeated(Periodic),and Extended Zone Schemes99
4.3.1 Reduced Zone Scheme100
4.3.2 Repeated Zone Scheme100
4.3.3 Extended Zone Scheme101
4.4 Band Index101
4.5 Effective Hamiltonian102
4.6 Proof of Bloch's Theorem from Translational Symmetry103
4.7 Approximate Solution Near a Zone Boundary105
4.8 Different Zone Schemes109
4.8.1 Reduced Zone Scheme109
4.8.2 Extended Zone Scheme110
4.8.3 Periodic Zone Scheme111
4.9 Elementary Band Theory of Solids111
4.9.1 Introduction111
4.9.2 Energy Bands in One Dimension112
4.9.3 Number of States in a Band112
4.10 Metals,Insulators,and Semiconductors112
4.11 Brillouin Zones117
4.12 Fermi Surface119
4.12.1 Fermi Surface (in Two Dimensions)119
4.12.2 Fermi Surface (in Three Dimensions)121
4.12.3 Harrison's Method of Construction of the Fermi Surface121
Problems124
References130
CHAPTER 5 Band-Structure Calculations131
5.1 Introduction131
5.2 Tight-Binding Approximation131
5.3 LCAO Method135
5.4 Wannier Functions140
5.5 Cellular Method142
5.6 Orthogonalized Plane-Wave(OPW)Method145
5.7 Pseudopotentials147
5.8 Muffin-Tin Potential149
5.9 Augmented Plane-Wave(APW)Method150
5.10 Green's Function (KKR)Method152
5.11 Model Pseudopotentials156
5.12 Empirical Pseudopotentials157
5.13 First-Principles Pseudopotentials158
Problems160
References163
CHAPTER 6 Static and Transport Properties of Solids165
6.1 Band Picture166
6.2 Bond Picture167
6.3 Diamond Structure168
6.4 Si and Ge168
6.5 Zinc-Blende Semiconductors170
6.6 Ionic Solids172
6.7 Molecular Crystals174
6.7.1 Molecular Solids174
6.7.2 Hydrogen-Bonded Structures174
6.8 Cohesion of Solids174
6.8.1 Molecular Crystals:Noble Gases174
6.8.2 Ionic Crystals176
6.8.3 Covalent Crystals177
6.8.4 Cohesion in Metals178
6.9 The Semiclassical Model179
6.10 Liouville's Theorem182
6.11 Boltzmann Equation183
6.12 Relaxation Time Approximation184
6.13 Electrical Conductivity186
6.14 Thermal Conductivity187
6.15 Weak Scattering Theory of Conductivity188
6.15.1 Relaxation Time and Scattering Probability188
6.15.2 The Collision Term188
6.15.3 Impurity Scattering189
6.16 Resistivity Due to Scattering by Phonons192
Problems194
References196
CHAPTER 7 Electron-Electron Interaction199
7.1 Introduction199
7.2 Hartree Approximation200
7.3 Hartree-Fock Approximation203
7.3.1 General Formulation203
7.3.2 Hartree-Fock Theory for Jellium204
7.4 Effect of Screening207
7.4.1 General Formulation207
7.4.2 Thomas-Fermi Approximation208
7.4.3 Lindhard Theory of Screening209
7.5 Friedel Sum Rule and Oscillations214
7.6 Frequency and Wave-Number-Dependent Dielectric Constant217
7.7 Mott Transition222
7.8 Density Functional Theory223
7.8.1 General Formulation223
7.8.2 Local Density Approximation224
7.9 Fermi Liquid Theory225
7.9.1 Quasiparticles225
7.9.2 Energy Functional227
7.9.3 Fermi Liquid Parameters230
7.10 Green's Function Method232
7.10.1 General Formulation232
7.10.2 Finite-Temperature Green's Function Formalism for Interacting Bloch Electrons233
7.10.3 Exchange Self-Energy in the Band Model234
Problems235
References241
CHAPTER 8 Dynamics of Bloch Electrons243
8.1 Semiclassical Model243
8.2 Velocity Operator244
8.3 k.P Perturbation Theory245
8.4 Quasiclassical Dynamics246
8.5 Effective Mass247
8.6 Bloch Electrons in External Fields248
8.6.1 Time Evolution of Bloch Electrons in an Electric Field250
8.6.2 Alternate Derivation for Bloch Functions in an External Electric and Magnetic Field252
8.6.3 Motion in an Applied DC Field253
8.7 Bloch Oscillations254
8.8 Holes255
8.9 Zener Breakdown(Approximate Method)258
8.10 Rigorous Calculation of Zener Tunneling261
8.11 Electron-Phonon Interaction264
Problems271
References274
CHAPTER 9 Semiconductors275
9.1 Introduction275
9.2 Electrons and Holes278
9.3 Electron and Hole Densities in Equilibrium279
9.4 Intrinsic Semiconductors283
9.5 Extrinsic Semiconductors284
9.6 Doped Semiconductors285
9.7 Statistics of Impurity Levels in Thermal Equilibrium288
9.7.1 Donor Levels288
9.7.2 Acceptor Levels288
9.7.3 Doped Semiconductors289
9.8 Diluted Magnetic Semiconductors290
9.8.1 Introduction290
9.8.2 Magnetization in Zero External Magnetic Field in DMS291
9.8.3 Electron Paramagnetic Resonance Shift291
9.8.4 ?.?Model295
9.9 Zinc Oxide296
9.10 Amorphous Semiconductors296
9.10.1 Introduction296
9.10.2 Linear Combination of Hybrids Model for Tetrahedral Semiconductors297
Problems300
References303
CHAPTER 10 Electronics305
10.1 Introduction305
10.2 p-n Junction306
10.2.1 Introduction306
10.2.2 p-n Junction in Equilibrium307
10.3 Rectification by a p-n Junction311
10.3.1 Equilibrium Case311
10.3.2 Nonequilibrium Case(V≠0)313
10.4 Transistors318
10.4.1 Bipolar Transistors318
10.4.2 Field-Effect Transistor319
10.4.3 Single-Electron Transistor321
10.5 Integrated Circuits325
10.6 Optoelectronic Devices325
10.7 Graphene329
10.8 Graphene-Based Electronics332
Problems333
References336
CHAPTER 11 Spintronics339
11.1 Introduction339
11.2 Magnetoresistance340
11.3 Giant Magnetoresistance340
11.3.1 Metallic Multilayers340
11.4 Mott's Theory of Spin-Dependent Scattering of Electrons342
11.5 Camley-Barnas Model345
11.6 CPP-GMR348
11.6.1 Introduction348
11.6.2 Theory of CPP-GMR of Multilayered Nanowires350
11.7 MTJ,TMR,and MRAM352
11.8 Spin Transfer Torques and Magnetic Switching356
11.9 Spintronics with Semiconductors357
11.9.1 Introduction357
11.9.2 Theory of an FM-T-N Junction358
11.9.3 Injection Coefficient361
Problems364
References367
CHAPTER 12 Diamagnetism and Paramagnetism369
12.1 Introduction370
12.2 Atomic(or Ionic)Magnetic Susceptibilities371
12.2.1 General Formulation371
12.2.2 Larmor Diamagnetism372
12.2.3 Hund's Rules373
12.2.4 Van Vleck Paramagnetism374
12.2.5 Landé g Factor375
12.2.6 Curie's Law377
12.3 Magnetic Susceptibility of Free Electrons in Metals378
12.3.1 General Formulation378
12.3.2 Landau Diamagnetism and Pauli Paramagnetism380
12.3.3 De Haas-van Alphen Effect383
12.4 Many-Body Theory of Magnetic Susceptibility of Bloch Electrons in Solids388
12.4.1 Introduction388
12.4.2 Equation of Motion in the Bloch Representation388
12.4.3 Thermodynamic Potential390
12.4.4 General Formula for X390
12.4.5 Exchange Self-Energy in the Band Model393
12.4.6 Exchange Enhancement of Xs394
12.4.7 Exchange and Correlation Effects on Xo395
12.4.8 Exchange and Correlation Effects on Xso396
12.5 Quantum Hall Effect396
12.5.1 Introduction396
12.5.2 Two-Dimensional Electron Gas396
12.5.3 Quantum Transport of a Two-Dimensional Electron Gas in a Strong Magnetic Field397
12.5.4 Quantum Hall Effect from Gauge Invariance400
12.6 Fractional Quantum Hall Effect400
Problems401
References407
CHAPTER 13 Magnetic Ordering409
13.1 Introduction410
13.2 Magnetic Dipole Moments411
13.3 Models for Ferromagnetism and Antiferromagnetism412
13.3.1 Introduction412
13.3.2 Heitler-London Approximation412
13.3.3 Spin Hamiltonian414
13.3.4 Heisenberg Model416
13.3.5 Direct,Indirect,and Superexchange416
13.3.6 Spin Waves in Ferromagnets:Magnons417
13.3.7 Schwinger Representation417
13.3.8 Application to the Heisenberg Hamiltonian418
13.3.9 Spin Waves in Antiferromagnets421
13.4 Ferromagnetism in Solids422
13.4.1 Ferromagnetism Near the Curie Temperature422
13.4.2 Comparison of Spin-Wave Theory with the Weiss Field Model424
13.4.3 Ferromagnetic Domains425
13.4.4 Hysteresis426
13.4.5 Ising Model427
13.5 Ferromagnetism in Transition Metals427
13.5.1 Introduction427
13.5.2 Stoner Model428
13.5.3 Ferromagnetism in Fe,Co,and Ni from Stoner's Model and Kohn-Sham Equations430
13.5.4 Free Electron Gas Model431
13.5.5 Hubbard Model433
13.6 Magnetization of Interacting Bloch Electrons434
13.6.1 Introduction434
13.6.2 Theory of Magnetization434
13.6.3 The Quasiparticle Contribution to Magnetization435
13.6.4 Contribution of Correlations to Magnetization436
13.6.5 Single-Particle Spectrum and the Criteria for Ferromagnetic Ground State437
13.7 The Kondo Effect439
13.8 Anderson Model439
13.9 The Magnetic Phase Transition440
13.9.1 Introduction440
13.9.2 The Order Parameter441
13.9.3 Landau Theory of Second-Order Phase Transitions441
Problems443
References448
CHAPTER 14 Superconductivity451
14.1 Properties of Superconductors452
14.1.1 Introduction452
14.1.2 Type Ⅰ and Type Ⅱ Superconductors453
14.1.3 Second-Order Phase Transition454
14.1.4 Isotope Effect454
14.1.5 Phase Diagram454
14.2 Meissner-Ochsenfeld Effect455
14.3 The London Equation455
14.4 Ginzburg-Landau Theory456
14.4.1 Order Parameter456
14.4.2 Boundary Conditions457
14.4.3 Coherence Length457
14.4.4 London Penetration Depth458
14.5 Flux Quantization459
14.6 Josephson Effect460
14.6.1 Two Superconductors Separated by an Oxide Layer460
14.6.2 AC and DC Josephson Effects462
14.7 Microscopic Theory of Superconductivity462
14.7.1 Introduction462
14.7.2 Quasi-Electrons463
14.7.3 Cooper Pairs464
14.7.4 BCS Theory466
14.7.5 Ground State of the Superconducting Electron Gas466
14.7.6 Excited States at T=0469
14.7.7 Excited States at T≠0470
14.8 Strong-Coupling Theory472
14.8.1 Introduction472
14.8.2 Upper Limit of the Critical Temperature,Tc472
14.9 High-Temperature Superconductors473
14.9.1 Introduction473
14.9.2 Properties of Novel Superconductors(Cuprates)474
14.9.3 Brief Review of s-,P-,and d-wave Pairing474
14.9.4 Experimental Confirmation of d-wave Pairing476
14.9.5 Search for a Theoretical Mechanism of High Tc Superconductors481
Problems481
References485
CHAPTER 15 Heavy Fermions487
15.1 Introduction488
15.2 Kondo-Lattice,Mixed-Valence,and Heavy Fermions490
15.2.1 Periodic Anderson and Kondo-Lattice Models490
15.2.2 Mixed-Valence Compounds492
15.2.3 Slave Boson Method493
15.2.4 Cluster Calculations494
15.3 Mean-Field Theories498
15.3.1 The Local Impurity Self-Consistent Approximation498
15.3.2 Application of LISA to Periodic Anderson Model499
15.3.3 RKKY Interaction500
15.3.4 Extended Dynamical Mean-field Theory501
15.4 Fermi-Liquid Models502
15.4.1 Heavy Fermi Liquids502
15.4.2 Fractionalized Fermi Liquids505
15.5 Metamagnetism in Heavy Fermions506
15.6 Ce-and U-Based Superconducting Compounds508
15.6.1 Ce-Based Compounds508
15.6.2 U-Based Superconducting Compounds509
15.7 Other Heavy-Fermion Superconductors513
15.7.1 PrOs4Sb12513
15.7.2 PuCoGa5513
15.7.3 PuRhGa5515
15.7.4 Comparison between Cu and Pu Containing High-Tc Superconductors516
15.8 Theories of Heavy-Fermion Superconductivity516
15.9 Kondo Insulators516
15.9.1 Brief Review516
15.9.2 Theory of Kondo Insulators517
Problems519
References524
CHAPTER 16 Metallic Nanoclusters527
16.1 Introduction528
16.1.1 Nanoscience and Nanoclusters528
16.1.2 Liquid Drop Model528
16.1.3 Size and Surface/Volume Ratio528
16.1.4 Geometric and Electronic Shell Structures530
16.2 Electronic Shell Structure531
16.2 1 Spherical Jellium Model(Phenomenological)531
16.2.2 Self-Consistent Spherical Jellium Model532
16.2.3 Ellipsoidal Shell Model535
16.2.4 Nonalkali Clusters535
16.2.5 Large Clusters535
16.3 Geometric Shell Structure537
16.3.1 Close-Packing537
16.3.2 Wulff Construction537
16.3 3 Polyhedra538
16.3.4 Filling between Complete Shells540
16.4 Cluster Growth on Surfaces540
16.4.1 Monte Carlo Simulations540
16.4.2 Mean-Field Rate Equations541
16.5 Structure of Isolated Clusters542
16.5.1 Theoretical Models542
16 5.2 Structure of Some Isolated Clusters546
16.6 Magnetism in Clusters547
16.6.1 Magnetism in Isolated Clusters547
16.6.2 Experimental Techniques for Studying Cluster Magnetism549
16.6.3 Magnetism in Embedded Clusters553
16.6.4 Graphite Surfaces555
16.6.5 Study of Clusters by Scanning Tunneling Microscope555
16.6.6 Clusters Embedded in a Matrix557
16.7 Superconducting State of Nanoclusters558
16.7.1 Qualitative Analysis558
16 7.2 Thermodynamic Green's Function Formalism for Nanoclusters559
Problems562
References565
CHAPTER 17 Complex Structures567
17.1 Liquids568
17.1.1 Introduction568
17.1.2 Phase Diagram568
17.1.3 Van Hove Pair Correlation Function569
17.1.4 Correlation Function for Liquids570
17.2 Superfluid 4He570
17.2.1 Introduction570
17.2.2 Phase Transition in 4He570
17.2.3 Two-Fluid Model for Liquid 4He571
17.2.4 Theory of Superfluidity in Liquid 4He571
17.3 Liquid 3He573
17.3.1 Introduction573
17.3.2 Possibility of Superfluidity in Liquid 3He574
17.3.3 Fermi Liquid Theory574
17.3.4 Experimental Results of Superfluidity in Liquid 3He575
17.3.5 Theoretical Model for the A and A1 Phases575
17.3.6 Theoretical Model for the B Phase577
17.4 Liquid Crystals578
17.4.1 Introduction578
17.4.2 Three Classes of Liquid Crystals578
17.4.3 The Order Parameter580
17.4.4 Curvature Strains581
17.4.5 Optical Properties of Cholesteric Liquid Crystals581
17.5 Quasicrystals583
17.5.1 Introduction583
17.5.2 Penrose Tiles583
17.5.3 Discovery of Quasicrystals584
17.5.4 Quasiperiodic Lattice584
17.5 5 Phonon and Phason Degrees of Freedom586
17.5.6 Dislocation in the Penrose Lattice589
17.5.7 Icosahedral Quasicrystals589
17.6 Amorphous Solids590
17.6.1 Introduction590
17.6.2 Energy Bands in One-Dimensional Aperiodic Potentials591
17.6.3 Density of States593
17.6.4 Amorphous Semiconductors593
Problems594
References597
CHAPTER 18 Novel Materials599
18.1 Graphene600
18.1.1 Introduction600
18.1.2 Graphene Lattice601
18.1.3 Tight-Binding Approximation602
18.1.4 Dirac Fermions606
18.1.5 Comprehensive View of Graphene608
18.2 Fullerenes608
18.2.1 Introduction608
18.2.2 Discovery of C60609
18.3 Fullerenes and Tubules613
18.3.1 Introduction613
18.3.2 Carbon Nauotubeles614
18.3.3 Three Types of Carbon Nanotubes614
18.3.4 Symmetry Properties of Carbon Nanotubes616
18.3.5 Band Structure of a Fullercne Nanotube617
18.4 Polymers617
18.4.1 Introduction617
18.4.2 Saturated and Conjugated Polymers618
18.4.3 Transparent Metallic Polymers621
18.4.4 Electronic Polymers621
18.5 Solitons in Conducting Polymers622
18 5.1 Introduction622
18.5 2 Electronic Structure623
18.5.3 Tight-Binding Model623
18.5.4 Soliton Excitations624
18.5.5 Solitons,Polarons,and Polaron Excitations626
18.6.6 Polarons and Bipolarons626
18.6 Photoinduced Electron Transfer627
Problems627
References630
APPENDIX A Elements of Group Theory633
A.1 Symmetry and Its Consequences633
A.1.1 Symmetry of Crystals633
A.1.2 Definition of a Group633
A.1.3 Symmetry Operations in Crystal Lattices634
A.2 Space Groups634
A.2.1 Introduction634
A.2.2 Space Group Operations634
A.3 Point Group Operations636
A.3.1 Introduction636
A.3.2 Description of Point Groups636
A.3.3 The Cubic Group Oh638
APPENDIX B Mossbauer Effect641
B.1 Introduction641
B.2 Recoilless Fraction642
B.3 Average Transferred Energy643
Reference644
APPENDIX C Introduction to Renormalization Group Approach645
C.1 Critical Behavior645
C.2 Theory for Scaling646
C.3 Renormalization Group Approach648
References649
lndex651