图书介绍
中国美术年鉴PDF|Epub|txt|kindle电子书版本网盘下载
![中国美术年鉴](https://www.shukui.net/cover/19/32632856.jpg)
- 著
- 出版社: 上海市文化运动委员会
- ISBN:
- 出版时间:1948
- 标注页数:406页
- 文件大小:12MB
- 文件页数:236页
- 主题词:
PDF下载
下载说明
中国美术年鉴PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 What are Distributions?1
1.1 Generalized functions and test functions1
Contents5
Preface5
1.2 Examples of distributions5
1.3 What good are distributions?8
1.4 Problems10
2 The Calculus of Distributions12
2.1 Functions as distributions12
2.2 Operations on distributions14
2.3 Adioint identities18
2.4 Consistency of derivatives20
2.5 Distributional solutions of differential equations22
2.6 Problems25
3.1 From Fourier series to Fourier integrals28
3 Fourier Transforms28
3.2 The Schwartz class S31
3.3 Properties of the Fourier transform on S32
3.4 The Fourier inversion formula on S38
3.5 The Fourier transform of a Gaussian41
3.6 Problems43
4 Fourier Transforms of Tempered Distributions46
4.1 The definitions46
4.2 Examples49
4.3 Convolutions with tempered distributions55
4.4 Problems57
5 Solving Partial Differential Equations60
5.1 The Laplace equation60
5.2 The heat equation64
5.3 The wave equation67
5.4 Schr?dinger's equation and quantum mechanics72
5.5 Problems73
6 The Structure of Distributions78
6.1 The support of a distribution78
6.2 Structure theorems82
6.3 Distributions with point support85
6.4 Positive distributions88
6.5 Continuity of distribution91
6.6 Approximation by test functions98
6.7 Local theory of distributions101
6.8 Distributions on spheres103
6.9 Problems108
7 Fourier Analysis113
7.1 The Riemann-Lebesgue lemma113
7.2 Paley-Wiener theorems119
7.3 The Poisson summation formula125
7.4 Probability measures and positive definite functions130
7.5 The Heisenberg uncertainty principle134
7.6 Hermite functions139
7.7 Radial Fourier transforms and Bessel functions143
7.8 Haar functions and wavelets149
7.9 Problems157
8 Sobolev Theory and Microlocal Analysis162
8.1 Sobolev inequalities162
8.2 Sobolev spaces172
8.3 Elliptic partial differential equations(constant coefficients)176
8.4 Pseudodifferential operators185
8.5 Hyperbolic operators191
8.6 The wave front set200
8.7 Microlocal analysis of singularities209
8.8 Problems214
Suggestions for Further Reading219
Index221