图书介绍
工厂物理学 制造企业管理基础PDF|Epub|txt|kindle电子书版本网盘下载
![工厂物理学 制造企业管理基础](https://www.shukui.net/cover/55/32315479.jpg)
- (美)WallaceJ.Hopp,(美)MarkL.Spearman著 著
- 出版社: 北京:清华大学出版社
- ISBN:730205973X
- 出版时间:2002
- 标注页数:698页
- 文件大小:38MB
- 文件页数:757页
- 主题词:
PDF下载
下载说明
工厂物理学 制造企业管理基础PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Factory Physics?1
0.1 The Short Answer1
0.2 The Long Answer1
0.2.1 Focus: Manufacturing Management1
0.2.2 Scope: Operations3
0.2.3 Method: Factory Physics6
0.2.4 Perspective: Flow Lines8
0.3 An Overview of the Book10
PART Ⅰ THE LESSONS OF HISTORY14
1 Manufacturing in America14
1.1 Introduction14
1.2 The American Experience15
1.3 The First Industrial Revolution17
1.3.1 The Industrial Revolution in America18
1.3.2 The American System of Manufacturing19
1.4 The Second Industrial Revolution20
1.4.1 The Role of the Railroads21
1.4.2 Mass Retailers22
1.4.3 Andrew Carnegie and Scale23
1.4.4 Henry Ford and Speed24
1.5 Scientific Management25
1.5.1 Frederick W. Taylor27
1.5.2 Planning versus Doing29
1.5.3 Other Pioneers of Scientific Management31
1.5.4 The Science of Scientific Management32
1.6 The Rise of the Modem Manufacturing Organization32
1.6.1 Du Pont, Sloan, and Structure33
1.6.2 Hawthorne and the Human Element34
1.6.3 Management Education36
1.7 Peak, Decline, and Resurgence of American Manufacturing37
1.7.1 The Golden Era37
1.7.2 Accountants Count and Salesmen Sell38
1.7.3 The Professional Manager40
1.7.4 Recovery and Globalization of Manufacturing42
1.8 The Future43
Discussion Points45
Study Questions46
2 Inventory Control: From EOQ to ROP48
2.1 Introduction48
2.2.2 The Model49
2.2.1 Motivation49
2.2 The Economic Order Quantity Model49
2.2.3 The Key Insight of EOQ52
2.2.4 Sensitivity54
2.2.5 EOQ Extensions56
2.3 Dynamic Lot Sizing56
2.3.1 Motivation57
2.3.2 Problem Formulation57
2.3.3 The Wagner-Whitin Procedure59
2.3.4 Interpreting the Solution62
2.3.5 Caveats63
2.4 Statistical Inventory Models64
2.4.1 The News Vendor Model65
2.4.2 The Base Stock Model69
2.4.3 The (Q,r) Model75
2.5 Conclusions88
Appendix2A Basic Probability89
Appendix2B Inventory Formulas100
Study Questions103
Problems104
3 The MRP Crusade109
3.1 Material Requirements Planning—MRP109
3.1.1 The Key Insight of MRP109
3.1.2 Overview of MRP110
3.1.3 MRP Inputs and Outputs114
3.1.4 The MRP Procedure116
3.1.5 Special Topics in MRP122
3.1.6 Lot Sizing in MRP124
3.1.7 Safety Stock and Safety Lead Times128
3.1.8 Accommodating Yield Losses130
3.1.9 Problems in MRP131
3.2 Manufacturing Resources Planning—MRP Ⅱ135
3.2.1 The MRP Ⅱ Hierarchy136
3.2.2 Long-Range Planning136
3.2.3 Intermediate Planning137
3.2.4 Short-Term Control141
3.3 Beyond MRP Ⅱ—Enterprise Resources Planning143
3.3.1 History and Success of ERP143
3.3.2 An Example: SAP R/3144
3.3.4 Advanced Planning Systems145
3.4 Conclusions145
3.3.3 Manufacturing Execution Systems145
Study Questions146
Problems147
4 The JIT Revolution151
4.1 The Origins of JIT151
4.2 JIT Goals153
4.3 The Environment as a Control154
4.4 Implementing JIT155
4.4.1 Production Smoothing156
4.4.2 Capacity Buffers157
4.4.3 Setup Reduction158
4.4.4 Cross-Training and Plant Layout159
4.4.5 Total Quality Management160
4.5 Kanban162
4.6 The Lessons of JIT165
Discussion Point166
Study Questions166
What Went Wrong168
5.1 Introduction168
5.2 Trouble with Scientific Management169
5.3 Trouble with MRP173
5.4 Trouble with JIT176
5.5 Where from Here?181
Discussion Points183
Study Questions183
PART Ⅱ FACTORY PHYSICS186
6 A Science of Manufacturing186
6.1 The Seeds of Science186
6.1.1 Why Science?187
6.1.3 Prescriptive and Descriptive Models190
6.1.2 Defining a Manufacturing System190
6.2 Objectives, Measures, and Controls192
6.2.1 The Systems Approach192
6.2.2 The Fundamental Objective195
6.2.3 Hierarchical Objectives195
6.2.4 Control and Information Systems197
6.3 Models and Performance Measures198
6.3.1 The Danger of Simple Models198
6.3.2 Building Better Prescriptive Models199
6.3.3 Accounting Models200
6.3.4 Tactical and Strategic Modeling204
6.3.5 Considering Risk205
Appendix 6A Activity-Based Costing208
6.4 Conclusions208
Study Questions209
Problems210
7 Basic Factory Dynamics213
7.1 Introduction213
7.2 Definitions and Parameters215
7.2.1 Definitions215
7.2.2 Parameters218
7.2.3 Examples219
7.3 Simple Relationships221
7.3.1 Best-Case Performance221
7.3.2 Worst-Case Performance226
7.3.3 Practical Worst-Case Performance229
7.3.4 Bottleneck Rates and Cycle Time233
7.3.5 Internal Benchmarking235
7.4 Labor-Constrained Systems238
7.4.1 Ample Capacity Case238
7.4.2 Full Flexibility Case239
7.4.3 CONWIP Lines with Flexible Labor240
7.5 Conclusions242
Study Questions243
Problems244
Intuition-Building Exercises246
8 Variability Basics248
8.1 Introduction248
8.2 Variability and Randomness249
8.2.1 The Roots of Randomness249
8.2.2 Probabilistic Intuition250
8.3 Process Time Variability251
8.3.1 Measures and Classes of Variability252
8.3.2 Low and Moderate Variability252
8.3.3 Highly Variable Process Times254
8.4 Causes of Variability255
8.4.1 Natural Variability255
8.4.2 Variability from Preemptive Outages (Breakdowns)255
8.4.3 Variability from Nonpreemptive Outages258
8.4.4 Variability from Recycle260
8.4.5 Summary of Variability Formulas260
8.5 Flow Variability261
8.5.1 Characterizing Variability in Flows261
8.6 Variability Interactions—Queueing264
8.5.2 Batch Arrivals and Departures264
8.6.1 Queueing Notation and Measures265
8.6.2 Fundamental Relations266
8.6.3 The M/M/1 Queue267
8.6.4 Performance Measures269
8.6.5 Systems with General Process and Interarrival Times270
8.6.6 Parallel Machines271
8.6.7 Parallel Machines and General Times273
8.7 Effects of Blocking273
8.7.1 The M/M/1/b Queue273
8.7.2 General Blocking Models277
8.8 Variability Pooling279
8.8.1 Batch Processing280
8.8.2 Safety Stock Aggregation280
8.8.3 Queue Sharing281
8.9 Conclusions282
Study Questions283
Problems283
9 The Corrupting Influence of Variability287
9.1 Introduction287
9.1.1 Can Variability Be Good?287
9.1.2 Examples of Good and Bad Variability288
9.2 Performance and Variability289
9.2.1 Measures of Manufacturing Performance289
9.2.2 Variability Laws294
9.2.3 Buffering Examples295
9.2.4 Pay Me Now or Pay Me Later297
9.2.6 Organizational Learning300
9.2.5 Flexibility300
9.3 Flow Laws301
9.3.1 Product Flows301
9.3.2 Capacity301
9.3.3 Utilization303
9.3.4 Variability and Flow304
9.4 Batching Laws305
9.4.1 Types of Batches305
9.4.2 Process Batching306
9.4.3 Move Batching311
9.5 Cycle Time314
9.5.1 Cycle Time at a Single Station315
9.5.2 Assembly Operations315
9.5.3 Line Cycle Time316
9.5.4 Cycle Time, Lead Time, and Service321
9.6 Diagnostics and Improvement324
9.6.1 Increasing Throughput324
9.6.2 Reducing Cycle Time327
9.6.3 Improving Customer Service330
9.7 Conclusions331
Study Questions333
Intuition-Building Exercises333
Problems335
10 Push and Pull Production Systems339
10.1 Introduction339
10.2 Definitions339
10.2.1 The Key Difference between Push and Pull340
10.2.2 The Push-PuU Interface341
10.3 The Magic of Pull344
10.3.1 Reducing Manufacturing Costs345
10.3.2 Reducing Variability346
10.3.3 Improving Quality347
10.3.4 Maintaining Flexibility348
10.3.5 Facilitating Work Ahead349
10.4 CONWIP349
10.4.1 Basic Mechanics349
10.4.2 Mean-Value Analysis Model350
10.5 Comparisons of CONWIP with MRP354
10.5.2 Efficiency355
10.5.1 Observability355
10.5.3 Variability356
10.5.4 Robustness357
10.6 Comparisons of CONWIP with Kanban359
10.6.1 Card Count Issues359
10.6.2 Product Mix Issues360
10.6.3 People Issues361
10.7 Conclusions362
Study Questions363
Problems363
11 The Human Element in Operations Management365
11.1 Introduction365
11.2 Basic Human Laws366
11.2.1 The Foundation of Self-interest366
11.2.2 The Fact of Diversity368
11.2.3 The Power of Zealotry371
11.2.4 The Reality of Burnout373
11.3 Planning versus Motivating374
11.4 Responsibility and Authority375
11.5 Summary377
Discussion Points378
Study Questions379
12 Total Quality Manufacturing380
12.1 Introduction380
12.1.1 The Decade of Quality380
12.1.2 A Quality Anecdote381
12.1.3 The Status of Quality382
12.2.2 Internal versus External Quality383
12.2 Views of Quality383
12.2.1 General Definitions383
12.3 Statistical Quality Control385
12.3.1 SQC Approaches385
12.3.2 Statistical Process Control385
12.3.3 SPC Extensions388
12.4 Quality and Operations389
12.4.1 Quality Supports Operations390
12.4.2 Operations Supports Quality396
12.5 Quality and the Supply Chain398
12.5.1 A Safety Lead Time Example399
12.5.2 Purchased Parts in an Assembly System399
12.5.3 Vendor Selection and Management401
Study Questions402
12.6 Conclusions402
Problems403
PART Ⅲ PRINCIPLES IN PRACTICE408
13 A Pull Planning Framework408
13.1 Introduction408
13.2 Disaggregation409
13.2.1 Time Scales in Production Planning409
13.2.2 Other Dimensions of Disaggregation411
13.2.3 Coordination413
13.3 Forecasting414
13.3.1 Causal Forecasting415
13.3.2 Time Series Forecasting418
13.3.3 The Art of Forecasting429
13.4 Planning for Pull430
13.5 Hierarchical Production Planning432
13.5.1 Capacity/Facility Planning434
13.5.2 Workforce Planning436
13.5.3 Aggregate Planning438
13.5.4 WIP and Quota Setting439
13.5.5 Demand Management441
13.5.6 Sequencing and Scheduling442
13.5.7 Shop Floor Control443
13.5.8 Real-Time Simulation443
13.5.9 Production Tracking444
13.6 Conclusions444
Appendix13A A Quota-Setting Model445
Study Questions447
Problems448
14 Shop Floor Control453
14.1 Introduction453
14.2 General Considerations456
14.2.1 Gross Capacity Control456
14.2.2 Bottleneck Planning458
14.2.3 Span of Control460
14.3 CONWIP Configurations461
14.3.1 Basic CONWIP461
14.3.2 Tandem CONWIP Lines464
14.3.3 Shared Resources465
14.3.4 Multiple-Product Families467
14.3.5 CONWIP Assembly Lines468
14.4 Other Pull Mechanisms469
14.4.1 Kanban470
14.4.2 Pull-from-the-Bottleneck Methods471
14.4.3 Shop Floor Control and Scheduling474
14.5 Production Tracking475
14.5.1 Statistical Throughput Control475
14.5.2 Long-Range Capacity Tracking478
14.6 Conclusions482
Appendix14AStatistical Throughput Control483
Study Questions484
Problems485
15 Production Scheduling488
15.1 Goals of Production Scheduling488
15.1.1 Meeting Due Dates488
15.1.2 Maximizing Utilization489
15.1.3 Reducing WIP and Cycle Times490
15.2 Review of Scheduling Research491
15.2.1 MRP, MRP Ⅱ, and ERP491
15.2.2 Classic Scheduling491
15.2.3 Dispatching493
15.2.4 Why Scheduling Is Hard493
15.2.5 Good News and Bad News497
15.2.6 Practical Finite-Capacity Scheduling498
15.3 Linking Planning and Scheduling501
15.3.1 Optimal Batching502
15.3.2 Due Date Quoting510
15.4 Bottleneck Scheduling513
15.4.1 CONWIP Lines Without Setups513
15.4.2 Single CONWIP Lines with Setups514
15.4.3 Bottleneck Scheduling Results518
15.5 Diagnostic Scheduling518
15.5.1 Types of Schedule Infeasibility519
15.5.2 Capacitated Material Requirements Planning—MRP-C522
15.5.3 Extending MRP-C to More General Environments528
15.5.4 Practical Issues528
15.6 Production Scheduling in a Pull Environment529
15.6.1 Schedule Planning, Pull Execution529
15.6.2 Using CONWIP with MRP530
15.7 Conclusions530
Study Questions531
Problems531
16.1 Introduction535
16 Aggregate and Workforce Planning535
16.2 Basic Aggregate Planning536
16.2.1 A Simple Model536
16.2.2 An LP Example538
16.3 Product Mix Planning546
16.3.1 Basic Model546
16.3.2 A Simple Example548
16.3.3 Extensions to the Basic Model552
16.4 Workforce Planning557
16.4.1 An LP Model557
16.4.2 A Combined AP/WP Example559
16.4.3 Modeling Insights568
16.5 Conclusions568
Appendix16A Linear Programming569
Study Questions575
Problems575
17 Supply Chain Management582
17.1 Introduction582
17.2 Reasons for Holding Inventory583
17.2.1 Raw Materials583
17.2.2 Work in Process583
17.2.3 Finished Goods Inventory585
17.2.4 Spare Parts586
17.3 Managing Raw Materials586
17.3.1 Visibility Improvements587
17.3.2 ABC Classification587
17.3.3 Just-in-Time588
17.3.5 Setting Order Frequencies for Purchased Components589
17.3.4 Setting Safety Stock/Lead Times for Purchased Components589
17.4 Managing WIP595
17.4.1 Reducing Queueing596
17.4.2 Reducing Wait-for-Batch WIP597
17.4.3 Reducing Wait-to-Match WIP599
17.5 Managing FGI600
17.6 Managing Spare Parts601
17.6.1 Stratifying Demand602
17.6.2 Stocking Spare Parts for Emergency Repairs602
17.7 Multiechelon Supply Chains610
17.7.1 System Configurations610
17.7.2 Performance Measures612
17.7.3 The Bullwhip Effect612
17.7.4 An Approximation for a Two-Level System616
17.8 Conclusions621
Discussion Point622
Study Questions623
Problems623
18 Capacity Management626
18.1 The Capacity-Setting Problem626
18.1.1 Short-Term and Long-Term Capacity Setting626
18.1.2 Strategic Capacity Planning627
18.1.3 Traditional and Modern Views of Capacity Management629
18.2 Modeling and Analysis631
18.2.1 Example: A Minimum Cost, Capacity-Feasible Line633
18.2.2 Forcing Cycle Time Compliance634
18.3 Modifying Existing Production Lines636
18.4.1 The Traditional Approach637
18.4 Designing New Production Lines637
18.4.2 A Factory Physics Approach638
18.4.3 Other Facility Design Considerations639
18.5 Capacity Allocation and Line Balancing639
18.5.1 Paced Assembly Lines640
18.5.2 Unbalancing Flow Lines640
18.6 Conclusions641
Appendix18A The Line-of-Balance Problem642
Study Questions645
Problems645
19 Synthesis-Pulling It All Together647
19.1 The Strategic Importance of Details647
19.2 The Practical Matter of Implementation648
19.2.1 A Systems Perspective648
19.2.2 Initiating Change649
19.3 Focusing Teamwork650
19.3.1 Pareto s Law651
19.3.2 Factory Physics Laws651
19.4 A Factory Physics Parable654
19.4.1 Hitting the Trail654
19.4.2 The Challenge657
19.4.3 The Lay of the Land657
19.4.4 Teamwork to the Rescue660
19.4.5 How the Plant Was Won666
19.4.6 Epilogue668
19.5 The Future668
References672
Index683