图书介绍

微分方程动态系统和混沌导论 第2版PDF|Epub|txt|kindle电子书版本网盘下载

微分方程动态系统和混沌导论 第2版
  • (美)赫希,斯梅尔著 著
  • 出版社: 北京;西安:世界图书出版公司
  • ISBN:750628281X
  • 出版时间:2007
  • 标注页数:417页
  • 文件大小:99MB
  • 文件页数:40205152页
  • 主题词:微分方程-英文;动态系统-英文;混沌学-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

微分方程动态系统和混沌导论 第2版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

CHAPTER 1 First-Order Equations1

1.1 The Simplest Example1

1.2 The Logistic Population Model4

1.3 Constant Harvesting and Bifurcations7

1.4 Periodic Harvesting and Periodic Solutions9

1.5 Computing the Poincare Map12

1.6 Exploration:A Two-Parameter Family15

CHAPTER 2 Planar Linear Systems21

2.1 Second-Order Differential Equations23

2.2 Planar Systems24

2.3 Preliminaries from Algebra26

2.4 Planar Linear Systems29

2.5 Eigenvalues and Eigenvectors30

2.6 Solving Linear Systems33

2.7 The Linearity Principle36

CHAPTER 3 Phase Portraits for Planar Systems39

3.1 Real Distinct Eigenvalues39

3.2 Complex Eigenvalues44

3.3 Repeated Eigenvalues47

3.4 Changing Coordinates49

CHAPTER 4 Classification of Planar Systems61

4.1 The Trace-Determinant Plane61

4.2 Dynamical Classification64

4.3 Exploration:A 3D Parameter Space71

CHAPTER 5 Higher Dimensional Linear Algebra75

5.1 Preliminaries from Linear Algebra75

5.2 Eigenvalues and Eigenvectors83

5.3 Complex Eigenvalues86

5.4 Bases and Subspaces89

5.5 Repeated Eigenvalues95

5.6 Genericity101

CHAPTER 6 Higher Dimensional Linear Systems107

6.1 Distinct Eigenvalues107

6.2 Harmonic Oscillators114

6.3 Repeated Eigenvalues119

6.4 The Exponential of a Matrix123

6.5 Nonautonomous Linear Systems130

CHAPTER 7 Nonlinear Systems139

7.1 Dynamical Systems140

7.2 The Existence and Uniqueness Theorem142

7.3 Continuous Dependence of Solutions147

7.4 The Variational Equation149

7.5 Exploration: Numerical Methods153

CHAPTER 8 Equilibria in Nonlinear Systems159

8.1 Some Illustrative Examples159

8.2 Nonlinear Sinks and Sources165

8.3 Saddles168

8.4 Stability174

8.5 Bifurcations176

8.6 Exploration: Complex Vector Fields182

CHAPTER 9 Global Nonlinear Techniques189

9.1 Nullclines189

9.2 Stability of Equilibria194

9.3 Gradient Systems203

9.4 Hamiltonian Systems207

9.5 Exploration: The Pendulum with Constant Forcing210

CHAPTER 10 Closed Orbits and Limit Sets215

10.1 Limit Sets215

10.2 Local Sections and Flow Boxes218

10.3 The Poincare Map220

10.4 Monotone Sequences in Planar Dynamical Systems222

10.5 The Poincare-Bendixson Theorem225

10.6 Applications of Poincare-Bendixson227

10.7 Exploration: Chemical Reactions That Oscillate230

CHAPTER 11 Applications in Biology235

11.1 Infectious Diseases235

11.2 Predator/Prey Systems239

11.3 Competitive Species246

11.4 Exploration: Competition and Harvesting252

CHAPTER 12 Applications in Circuit Theory257

12.1 An RLC Circuit257

12.2 The Lienard Equation261

12.3 The van der Pol Equation262

12.4 A Hopf Bifurcation270

12.5 Exploration: Neurodynamics272

CHAPTER 13 Applications in Mechanics277

13.1 Newton’s Second Law277

13.2 Conservative Systems280

13.3 Central Force Fields281

13.4 The Newtonian Central Force System285

13.5 Kepler’s First Law289

13.6 The Two-Body Problem292

13.7 Blowing Up the Singularity293

13.8 Exploration: Other Central Force Problems297

13.9 Exploration: Classical Limits of Quantum Mechanical Systems298

CHAPTER 14 The Lorenz System303

14.1 Introduction to the Lorenz System304

14.2 Elementary Properties of the Lorenz System306

14.3 The Lorenz Attractor310

14.4 A Model for the Lorenz Attractor314

14.5 The Chaotic Attractor319

14.6 Exploration: The Rossler Attractor324

CHAPTER 15 Discrete Dynamical Systems327

15.1 Introduction to Discrete Dynamical Systems327

15.2 Bifurcations332

15.3 The Discrete Logistic Model335

15.4 Chaos337

15.5 Symbolic Dynamics342

15.6 The Shift Map347

15.7 The Cantor Middle-Thirds Set349

15.8 Exploration: Cubic Chaos352

15.9 Exploration: The Orrbit Diagram353

CHAPTER 16 Homoclinic Phenomena359

16.1 The Shil’nikov System359

16.2 The Horseshoe Map366

16.3 The Double Scroll Attractor372

16.4 Homoclinic Bifurcations375

16.5 Exploration: The Chua Circuit379

CHAPTER 17 Existence and Uniqueness Revisited383

17.1 The Existence and Uniqueness Theorem383

17.2 Proof of Existence and Uniqueness385

17.3 Continuous Dependence on Initial Conditions392

17.4 Extending Solutions395

17.5 Nonautonomous Systems398

17.6 Differentiability of the Flow400

Bibliography407

Index411

热门推荐